Для чего нужны вертикальные и горизонтальные связи. Горизонтальные связи по нижним поясам

Вертикальные размеры

Н о ≥ Н 1 + Н 2 ;

Н 2 ≥ Н к + f + d;

d = 100 мм;

Полная высота колонны

Размеры фонаря:

· H ф = 3150 мм.


Горизонтальные размеры

< 30 м, то назначаем привязку а = 250 мм.

< h в = 450 мм.

где В 1 =300 мм по прил. 1



·

< h н = 1000 мм.

-

- связей фонаря;

- связей фахверка.

3.

Сбор нагрузок на раму.

3.1.1.


Нагрузки на подкрановую балку.

Подкрановая балка пролетом 12 м под два крана грузоподъемностью Q = 32/5 т. Режим работы кранов – 5К. Пролет здания 30 м. Материал балки С255: R y = 250 МПа = 24 кН/см 2 (при толщине t≤ 20 мм); R s = 14 кН/см 2 .

Для крана Q = 32/5 т среднего режима работы по прил. 1 наибольшее вертикальное усилие на колесе F k n = 280кН; вес тележки G Т = 85кН; тип кранового рельса - КР-70.

Для кранов среднего режима работы поперечное горизонтальное усилие на колесе, для кранов с гибким подвесом кранов:

Т n = 0,05*(Q + G Т)/n о = 0,05(314+ 85)/2= 9,97 кН,

где Q – номинальная грузоподъемность крана, кН; G т – вес тележки, кН; n о – число колес с одной стороны крана.

Расчетные значения усилий на колесе крана:

F к = γ f * k 1* F k n =1,1*1*280= 308 кН;

Т к = γ f *k 2 *Т n = 1,1*1*9,97 = 10,97 кН,

где γ f = 1,1 - коэффициент надежности по крановой нагрузке;

k 1 , k 2 =1 - коэффициенты динамичности, учитывающий ударный характер нагрузки при движении крана по неровностям пути и на стыках рельсов, табл. 15.1 .

Таблица

Номер нагрузки Нагрузки и комбинации усилий Ψ 2 Сечения стойки
1 - 1 2 - 2 3 - 3 4 - 4
M N Q M N M N M N Q
Постоянная -64,2 -53,5 -1,4 -56,55 -177 -6 -177 +28,9 -368 -1,4
Снеговая -67,7 -129,9 -3,7 -48,4 -129,6 -16 -129,6 +41,5 -129,6 -3,7
0,9 -60,9 -116,6 -3,3 -43,6 -116,6 -14,4 -116,6 +37,4 -116,6 -3,3
D max на левую стойку +29,5 -34,1 +208,8 -464,2 -897 +75,2 -897 -33,4
0,9 +26,5 -30,7 +188 -417,8 -807,3 +67,7 -807,3 -30,1
3 * на правую стойку -99,8 -31,2 +63,8 -100,4 -219 +253,8 -219 -21,9
0,9 -90 -28,1 +57,4 -90,4 -197,1 +228,4 -197,1 -19,7
Т на левую стойку ±8,7 ±16,2 ±76,4 ±76,4 ±186 ±16,2
0,9 ±7,8 ±14,6 ±68,8 ±68,8 ±167,4 ±14,6
4 * на правую стойку ±60,5 ±9,2 ±12 ±12 ±133,3 ±9
0,9 ±54,5 ±8,3 ±10,8 ±10,8 ±120 ±8,1
Ветровая слева ±94,2 +5,8 +43,5 +43,5 -344 +35,1
0,9 ±84,8 +5,2 +39,1 +39,1 -309,6 +31,6
5 * справа -102,5 -5,5 -39 -39 +328 -34,8
0,9 -92,2 -5 -35,1 -35,1 +295,2 -31,3
+M max N соот Ψ 2 = 1 № нагрузок - 1,3,4 - 1, 5 *

усилия
- - - +229 -177 - - +787 -1760
Ψ 2 = 0,9 № нагрузок - 1, 3, 4, 5 - 1, 2, 3 * , 4, 5 *
усилия - - - +239 -177 - - +757 -682
-M ma N соот Ψ 2 = 1 № нагрузок 1, 2 1, 2 1, 3, 4 1, 5
усилия -131,9 -183,1 -105 -306,6 -547 -1074 -315 -368
Ψ 2 = 0,9 № нагрузок 1, 2, 3 * , 4, 5 * 1, 2, 5 * 1, 2, 3, 4, 5 * 1, 3, 4 (-), 5
усилия -315,1 -170,1 -52,3 -135 -294 -542 -1101 -380 -1175
N ma +M соот Ψ 2 = 1 № нагрузок - - - 1, 3, 4
усилия - - - - - - - +264 -1265
Ψ 2 = 0,9 № нагрузок - - - 1, 2, 3, 4, 5 *
усилия - - - - - - - +597 -1292
N mi -M соот Ψ 2 = 1 № нагрузок 1, 2 1, 2 1, 3, 4 -
усилия -131,9 -183,1 -105 -306,6 -547 -1074 - -
Ψ 2 = 0,9 № нагрузок 1, 2, 3 * , 4, 5 * 1, 2, 5 * 1, 2, 3, 4, 5 * -
усилия -315,1 -170,1 -52,3 -135 -294 -472 -1101 - -
N mi -M соот Ψ 2 = 1 № нагрузок 1, 5 *
усилия +324 -368
N mi +M соот Ψ 2 = 0,9 № нагрузок 1, 5
усилия -315 -368
Q ma Ψ 2 = 0,9 № нагрузок 1, 2, 3, 4, 5 *
усилия -89

3.4. Расчет ступенчатой колонны производственного здания.

3.4.1. Исходные данные:

Сопряжение ригеля и колонны – жесткое;

Расчетные усилия указаны в таблице,

Для верхней части колонны

в сечении 1-1 N = 170 кН, М = -315кНм, Q = 52 кН;

в сечении 2-2: М = -147 кНм.

Для нижней части колонны

N 1 = 1101 кН, М 1 = -542 кНм (изг. момент догружает подкрановую ветвь);

N 2 = 1292 кН, М 2 = +597 кНм (изг. момент догружает наружную ветвь);

Q max = 89кН.

Соотношение жесткостей верхней и нижней частей колонны I в /I н = 1/5;

материал колонны – сталь марки С235, бетон фундамента класса В10;

коэффициент надежности по нагрузке γ n =0,95.

База наружной ветви.

Требуемая площадь плиты:

А пл.тр = N в2 /R ф = 1205/0,54 = 2232 см 2 ;

R ф = γR б ≈ 1,2*0,45 = 0,54 кН/см 2 ; R б = 0,45 кН/см 2 (бетон В7,5) табл. 8.4..

По конструктивным соображениям свес плиты с 2 должен быть не менее 4 см.

Тогда В ≥ b к + 2с 2 = 45 + 2*4 = 53 см, принимаем В = 55 см;

L тр = А пл.тр /В = 2232/55 = 40,6 см, принимаем L = 45 см;

А пл. = 45*55 = 2475 см 2 > А пл.тр = 2232 см 2 .

Среднее напряжение в бетоне под плитой:

σ ф = N в2 /А пл. = 1205/2475 = 0,49 кН/см 2 .

Из условия симметричного расположения траверс относительно центра тяжести ветви, расстояние между траверсами в свету равно:

2(b f + t w – z o) = 2*(15 + 1,4 – 4,2) = 24,4 см; при толщине траверсы 12 мм с 1 = (45 – 24,4 – 2*1,2)/2 = 9,1 см.

· Определяем изгибающие моменты на отдельных участках плиты:

участок 1 (консольный свес с = с 1 = 9,1 см):

М 1 = σ ф с 1 2 /2 = 0,49*9,1 2 /2 = 20 кНсм;

участок 2 (консольный свес с = с 2 = 5 см):

М 2 = 0,82*5 2 /2 = 10,3 кНсм;

участок 3 (плита, опертая на четыре стороны): b/а = 52,3/18 = 2,9 > 2, α = 0,125):

М 3 = ασ ф а 2 = 0,125*0,49*15 2 = 13,8 кНсм;

участок 4 (плита, опертая на четыре стороны):

М 4 = ασ ф а 2 = 0,125*0,82*8,9 2 = 8,12 кНсм.

Принимаем для расчета М max = М 1 = 20 кНсм.

· Требуемая толщина плиты:

t пл = √6М max γ n /R y = √6*20*0,95/20,5 = 2,4 см,

где R y = 205 МПа = 20,5 кН/см 2 для стали Вст3кп2 толщиной 21 – 40 мм.

Принимаем t пл = 26 мм (2 мм – припуск на фрезеровку).

Высоту траверсы определяем из условия размещения шва крепления траверсы к ветви колонны. В запас прочности все усилие в ветви передаем на траверсы через четыре угловых шва. Сварка полуавтоматическая проволокой марки Св – 08Г2С, d = 2 мм, k f = 8 мм. Требуемая длина шва определяется:

l w .тр = N в2 γ n /4k f (βR w γ w) min γ = 1205*0,95/4*0,8*17 = 21 см;

l w < 85β f k f = 85*0,9*0,8 = 61 см.

Принимаем h тр = 30см.

Проверка прочности траверсы выполняется так же, как для центрально-сжатой колонны.

Расчет анкерных болтов крепления подкрановой ветви (N min =368 кН; М=324 кНм).

Усилие в анкерных болтах:F a =(М- N y 2)/ h о =(32400-368*56)/145,8=81кН.

Требуемая площадь сечения болтов из стали Вст3кп2: R ва =18,5 кН/см 2 ;

А в.тр = F a γ n / R ва =81*0,95/18,5=4,2 см 2 ;

Принимаем 2 болта d=20 мм, А в.а =2*3,14=6,28 см 2 . Усилие в анкерных болтах наружной ветви меньше. Из конструктивных соображений принимаем такие же болты.

3.5. Расчет и конструирование стропильной фермы.

Исходные данные.

Материал стержней ферм – сталь марки C245 R = 240 МПа = 24 кН/см 2 (t ≤ 20 мм), материал фасонок – C255 R = 240 МПа = 24 кН/см 2 (t ≤ 20 мм);

Элементы ферм выполняются из уголков.

Нагрузка от массы покрытия (за исключением веса фонаря):

g кр ’ = g кр – γ g g фон ′ = 1,76 – 1,05*10 = 1,6 кН/м 2 .

Массу фонаря, в отличие от расчета рамы, учитываем в местах фактического опирания фонаря на ферму.

Масса каркаса фонаря на единицу площади горизонтальной проекции фонаря g фон ’ = 0,1 кН/м 2 .

Масса бортовой стенки и остекления на единицу длины стенки g б.ст = 2 кН/м;

d-расчетная высота, принимается расстояние между осями поясов (2250-180=2,07м)

Узловые силы (а):

F 1 = F 2 = g кр ’ Вd = 1,6*6*2= 19,2 кН;

F 3 = g кр ’ Вd + (g фон ’ 0,5d + g б.ст)В = 1,6*6*2 + (0,1*0,5*2 + 2)*6 = 21,3 кН;

F 4 = g кр ’ В(0,5d + d) + g фон ’ В(0,5d + d) = 1,6*6*(0,5*2 + 2) + 0,1*6*(0,5*2 + 2) = 30,6 кН.

Опорные реакции: . F Ag = F 1 + F 2 +F 3 +F 4 /2=19,2+19,2+21,3+30,6/2=75 кН.

S = S g m= 1,8 m.

Узловые силы:

1–й вариант снеговой нагрузки (б)

F 1s = F 2s =1,8*6*2*1,13=24,4 кН;

F 3s = 1,8*6*2*(0,8+1,13)/2=20,8 кН;

F 4s = 1,8*6*(2*0,5+2)*0,8=25,9 кН.

Опорные реакции: . F As = F 1s + F 2s +F 3s +F 4s /2=2*24,2+20,8+25,9/2=82,5 кН.

2–й вариант снеговой нагрузки (в)

F 1 s ’ = 1,8*6*2=21,6 кН;

F 2 s ’ = 1,8*6*2*1,7=36,7 кН;

F 3 s ’ = 1,8*6*2/2*1,7=18,4 кН;

Опорные реакции: . F′ As = F 1 s ’ + F 2 s ’ + F 3 s ’ =21,6+36,7+18,4=76,7 кН.

Нагрузка от рамных моментов (см. таблицу)(г).

Первая комбинация

(сочет. 1, 2, 3* ,4, 5*): М 1 max =-315 кНм; сочет. (1, 2, 3, 4*, 5):

М 2соотв = -238 кНм.

Вторая комбинация (без учета снеговой нагрузки):

М 1 =-315-(-60,9)=-254 кНм; М 2соотв = -238-(-60,9)=-177 кНм.

Расчет швов.

№ стержня Сечение [N], кН Шов по обушку Шов по перу
N об, кН K f , см l w , см N п, кН k f , см l w , см
1-2 2-3 3-4 4-5 5-6 125х80х8 50х5 50х5 50х5 50х5 282 198 56 129 56 0,75N = 211 0,7N = 139 39 90 39 0,6 0,6 0,6 0,6 0,6 11 8 3 6 9 0,25N = 71 0,3N = 60 17 39 17 0,4 0,4 0,4 0,4 0,4 6 6 3 4 3

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ.

1. Металлические конструкции. под ред. Ю.И. Кудишина Москва, изд. ц. «Академия», 2008г.

2. Металлические конструкции. Учебник для вузов /Под ред. Е. И. Беленя. – 6-е изд. М.: Стройиздат, 1986. 560 с.

3. Примеры расчета металлических конструкций. Под редакцией А. П. Мандриков. – 2-е изд. М.: Стройиздат, 1991. 431 с.

4. СНиП II-23-81 * (1990). Стальные конструкции. – М.; ЦИТП Госстроя СССР, 1991. – 94 с.

5. СНиП 2.01.07-85. Нагрузки и воздействия. – М.; ЦИТП Госстроя СССР, 1989. – 36 с.

6. СНиП 2.01.07-85 * . Дополнения, Раздел 10. Прогибы и перемещения. – М.; ЦИТП Госстроя СССР, 1989. – 7 с.

7. Металлические конструкции. Учебник для вузов/Под ред. В. К. Файбишенко. – М.: Стройиздат, 1984. 336 с.

8. ГОСТ 24379.0 – 80. Фундаментные болты.

9. Методические указания по курсовым проектам «Металлические конструкции» Морозова 2007г.

10. Проектирование металлических конструкций производственных зданий. Под ред. А.И. Актуганов 2005г.

Вертикальные размеры

Проектирование каркаса одноэтажного производственного здания начинаем с выбора конструктивной схемы и ее компоновки. Высота здания от уровня пола до низа строительной фермы Н о:

Н о ≥ Н 1 + Н 2 ;

где Н 1 – расстояние от уровня пола до головки кранового рельса по заданию Н 1 =16 м;

Н 2 – расстояние от головки кранового рельса до низа строительных конструкций покрытия, рассчитываемые по формуле:

Н 2 ≥ Н к + f + d;

где Н к – высота мостового крана; Н к =2750 мм по прил. 1

f – размер, учитывающий прогиб конструкции покрытия в зависимости от величины пролета, f = 300 мм;

d - зазор между верхней точкой тележки крана и строительной конструкцией,

d = 100 мм;

Н 2 = 2750 +300 +100 = 3150 мм, принято – 3200 мм (т.к. Н 2 принимается кратным 200мм)

H о ≥ Н 1 + Н 2 = 16000 + 3200= 19200 мм, принято – 19200 мм (т.к. Н 2 принимается кратным 600мм)

Высота верхней части колонны:

· Н в = (h б + h р) + Н 2 = 1500 + 120 + 3200 = 4820 мм., окончательно размер уточним после расчета подкрановой балки.

Высота нижней части колонны, при заглублении базы колонны на 1000 мм ниже пола

· Н н = H о - Н в + 1000 = 19200 - 4820 + 1000 = 15380 мм.

Полная высота колонны

· H = Н в + Н н = 4820+ 15380 = 20200 мм.

Размеры фонаря:

Принимаем фонарь шириной 12 м с остеклением в один ярус высотой 1250 мм, высотой борта 800 мм и карниза 450 мм.

Н фн. = 1750 +800 +450 =3000 мм.

· H ф = 3150 мм.

Конструктивная схема каркаса здания представлена на рисунке:


Горизонтальные размеры

Так как шаг колонн 12 м, грузоподъемность 32/5 т, высота здания < 30 м, то назначаем привязку а = 250 мм.

· h в = а + 200= 250 + 200 = 450мм

· h в min = Н в /12 = 4820/12 = 402мм < h в = 450 мм.

Определим значение величины l 1:

· l 1 ≥ В 1 + (h в - а) + 75 = 300 + (450-250) + 75 = 575 мм.

где В 1 =300 мм по прил. 1

Принимаем l 1 = 750 мм (кратный 250 мм).

Ширина сечения нижней части колонны:

· h н = l 1 +а = 750 + 250= 1000мм.

· h н min = Н н /20 = 15380/20 = 769мм< h н = 1000 мм.

Сечение верхней части колонны назначаем сплошностенчатым двутавровым, нижней – сплошной.

Связи стального каркаса производственного здания

Пространственная жесткость каркаса и устойчивость каркаса и отдельных его элементов обеспечивается путем постановки системы связей:

Связей между колоннами (ниже и выше подкрановой балки), необходимые для обеспечения устойчивости колонн из плоскостей рам, восприятия и передачи на фундаменты нагрузок, действующих вдоль здания (ветровых, температурных) и фиксацию колонн во время монтажа;

- связей между фермами: а) горизонтальные поперечные связи по нижним поясам ферм, воспринимающие нагрузку от ветра, действующую на торец здания; б) горизонтальные продольные связи по нижним поясам ферм; в) горизонтальные поперечные связи по верхним поясам ферм; г)вертикальные связи между фермами;

- связей фонаря;

- связей фахверка.

3. Расчетно-конструктивная часть.

Сбор нагрузок на раму.

3.1.1. Расчетная схема поперечной рамы.

За геометрические оси ступенчатых колонн принимаются линии, проходящие через центры тяжести верхней и нижней частей колонны. Несовпадение центров тяжестей дает эксцентриситет «е 0 », который вычисляем:

е 0 =0,5*(h н - h в)=0,5*(1000-450)=0,275м


Металлический каркас состоит из многих несущих элементов (ферма, рама, колонны, балки, ригели), которые необходимо «связывать» друг с другом для сохранения устойчивости сжатых элементов, жесткости и геометрической неизменяемости конструкции всего здания. Для соединения конструктивных элементов каркаса служат металлические связи . Они воспринимают основные продольные и поперечные нагрузки и передают их на фундамент. Металлические связи также равномерно распределяют нагрузки между фермами и рамами каркаса для сохранения общей устойчивости. Важным их назначением является противодействие горизонтальным нагрузкам, т.е. ветровым нагрузкам.

Саратовский резервуарный завод производит связи из горячекатаных сортовых уголков, гнутых уголков, гнутых профильных труб, горячекатаных профильных труб, круглых труб, горячекатаные и гнутых швеллеров и двутавр. Общая масса используемого металла должна составлять приблизительно 10% от общей массы металлоконструкции здания.

Основными элементами, которые соединяют связи, являются фермы и колонны.

Металлические связи колонн

Связи колонн обеспечивают поперечную устойчивость металлической конструкции здания и его пространственную неизменяемость. Связи колонн и стоек являются вертикальными металлоконструкциями и конструктивно представляют собой распорки или диски, которые формируют систему продольных рам. Назначение жестких дисков - крепление колонн к фундаменту здания. Распорки соединяют колонны в горизонтальной плоскости. Распорки представляют собой продольные балочные элементы, например, межэтажные перекрытия, подкрановые балки.

Внутри связей колонн различают связи верхнего яруса и связи нижнего яруса колонн . Связи верхнего яруса располагают выше подкрановых балок, связи нижнего яруса, соответственно, ниже балок. Основными функциональными назначениями нагрузок двух ярусов являются способность передачи ветровой нагрузка на торец здания с верхнего яруса через поперечные связи нижнего яруса на подкрановые балки. Верхние и нижние связи также способствуют удерживанию конструкции от опрокидывания в процессе монтажа. Связи нижнего яруса к тому же передают нагрузки от продольного торможения кранов на подкрановые балки, что обеспечивает устойчивость подкрановой части колонн. В основном в процессе возведения металлоконструкций здания используются связи нижних ярусов.

Схема вертикальных связей между колоннами

Металлические связи ферм

Для придания пространственной жесткости конструкции здания или сооружения металлические фермы также соединяются связями. Связь ферм представляет собой пространственный блок с прикрепленными к нему смежными стропильными фермами. Смежные фермы по верхним и нижним поясам соединены горизонтальными связями ферм , а по стойкам решетки - вертикальными связями ферм .

Горизонтальные связи ферм по нижним и верхним поясам

Горизонтальные связи ферм бывают также продольными и поперечными.

Нижние пояса ферм соединяются поперечными и продольными горизонтальными связями: первые фиксируют вертикальные связи и растяжки, за счет чего уменьшается уровень вибрации поясов ферм; вторые служат опорами верхних концов стоек продольного фахверка и равномерно распределяют нагрузки на соседние рамы.

Верхние пояса ферм соединяются горизонтальными поперечными связями в виде распорок или прогонов для сохранения запроектированного положения ферм. Поперечные связи объединяют верхние пояса фермы в единую систему и становятся «замыкающей гранью». Распорки как раз предотвращают смещение ферм, а поперечные горизонтальные фермы/связи предотвращают от смещения распорки.

Вертикальные связи ферм необходимы в процессе возведения здания или сооружения. Их как раз и называют зачастую монтажными связями. Вертикальные связи способствуют сохранению устойчивости ферм из-за смещения их центра тяжести выше опор. Вместе с промежуточными фермами они образуют пространственно-жесткий блок с торцов здания. Конструктивно вертикальные связи ферм представляют собой диски, состоящие из распорок и ферм, которые располагаются между стойками стропильных ферм по всей длине здания.

Вертикальные связи колонн и ферм

Конструкции металлических связей стального каркаса

По конструкции металлические связи также бывают:

    перекрестные связи, когда элементы связей пересекаются и соединяются между собой посередине

    угловые связи, которые располагаются несколькими частями в ряд; применяются в основном для строительства малопролетных каркасов

    портальные связи для каркасов П-образного вида (с проемами) имеют большую площадь поверхности

Основным типом соединения металлических связей - это болтовое, так как такой вид крепления максимально эффективен, надежен и удобен в процессе монтажа.

Специалисты Саратовского резервуарного завода спроектируют и изготовят металлические связи из любого профиля в соответствии с механическими требованиями к физико-химическим свойствам материала в зависимости от технико-эксплуатационных условий.

Надежность, устойчивость и жесткость металлического каркаса Вашего здания или сооружения во много зависит от качественного изготовления металлических связей.

Как заказать изготовление металлических связей на Саратовском резервуарном заводе?

Для расчета стоимости металлоконструкций нашего производства, Вы можете:

Специалисты Завода предлагают комплексные услуги:

  • инженерные изыскания на объекте эксплуатации
  • проектирование объектов нефтегазового комплекса
  • производство и монтаж различных металлоконструкций

Связи по покрытию включают вертикальные связи между фермами, горизонтальные связи по верхним и по нижним поясам ферм. Связи по верхним поясам устраиваем для того, чтобы воспринять часть ветровой нагрузки и предотвратить от выпучивания сжатые стержни верхних поясов. Поперечные связевые фермы устраиваем в торцах и в середине здания. Связи по нижним поясам устанавливаем для восприятия ветровых и крановых нагрузок продольного и поперечного направления. Связь ферм представляет собой пространственный блок с прикрепленными к нему смежными стропильными фермами. Смежные фермы по верхним и нижним поясам соединены горизонтальными связями ферм, а по стойкам решетки – вертикальными связями ферм.

Нижние пояса ферм соединяются поперечными и продольными горизонтальными связями: первые фиксируют вертикальные связи и растяжки, за счет чего уменьшается уровень вибрации поясов ферм; вторые служат опорами верхних концов стоек продольного фахверка и равномерно распределяют нагрузки на соседние рамы. Верхние пояса ферм соединяются горизонтальными поперечными связями в виде распорок или прогонов для сохранения запроектированного положения ферм.

Связи между колоннами производственных зданий

Связи колонн обеспечивают поперечную устойчивость металлической конструкции здания и его пространственную неизменяемость. Связи колонн и стоек являются вертикальными металлоконструкциями и конструктивно представляют собой распорки или диски, которые формируют систему продольных рам. Распорки соединяют колонны в горизонтальной плоскости. Распорки представляют собой продольные балочные элементы. Внутри связей колонн различают связи верхнего яруса и связи нижнего яруса колонн. Связи верхнего яруса располагают выше подкрановых балок, связи нижнего яруса, соответственно, ниже балок. Основными функциональными назначениями нагрузок двух ярусов являются способность передачи ветровой нагрузка на торец здания с верхнего яруса через поперечные связи нижнего яруса на подкрановые балки. Верхние и нижние связи также способствуют удерживанию конструкции от опрокидывания в процессе монтажа. Связи нижнего яруса к тому же передают нагрузки от продольного торможения кранов на подкрановые балки, что обеспечивает устойчивость подкрановой части колонн. В основном в процессе возведения металлоконструкций здания используются связи нижних ярусов.



Системы связи каркасов производственных зданий

Для соединения конструктивных элементов каркаса служат металлические связи. Они воспринимают основные продольные и поперечные нагрузки и передают их на фундамент. Металлические связи также равномерно распределяют нагрузки между фермами и рамами каркаса для сохранения общей устойчивости. Важным их назначением является противодействие горизонтальным нагрузкам, т.е. ветровым нагрузкам. Связи колонн обеспечивают поперечную устойчивость металлической конструкции здания и его пространственную неизменяемость. Внутри связей колонн различают связи верхнего яруса и связи нижнего яруса колонн. Связи верхнего яруса располагают выше подкрановых балок, связи нижнего яруса, соответственно, ниже балок. Основными функциональными назначениями нагрузок двух ярусов являются способность передачи ветровой нагрузка на торец здания с верхнего яруса через поперечные связи нижнего яруса на подкрановые балки. Верхние и нижние связи также способствуют удерживанию конструкции от опрокидывания в процессе монтажа. Связи нижнего яруса к тому же передают нагрузки от продольного торможения кранов на подкрановые балки, что обеспечивает устойчивость подкрановой части колонн. В основном в процессе возведения металлоконструкций здания используются связи нижних ярусов. Для придания пространственной жесткости конструкции здания или сооружения металлические фермы также соединяются связями. Смежные фермы по верхним и нижним поясам соединены горизонтальными связями ферм, а по стойкам решетки – вертикальными связями ферм. Нижние пояса ферм соединяются поперечными и продольными горизонтальными связями: первые фиксируют вертикальные связи и растяжки, за счет чего уменьшается уровень вибрации поясов ферм; вторые служат опорами верхних концов стоек продольного фахверка и равномерно распределяют нагрузки на соседние рамы. Поперечные связи объединяют верхние пояса фермы в единую систему и становятся «замыкающей гранью». Распорки как раз предотвращают смещение ферм, а поперечные горизонтальные фермы связи предотвращают от смещения распорки.

Прогоны сплошного сечения

Сплошные прогоны применяют при шаге ферм не более 6 м н в зависимости от назначения имеют различное расчетное сечение. Сплошные прогоны изготовляются по разрезной и неразрезной схемам. Чаще всего используют разрезные схемы из-за их свойства упрощать монтаж, однако неразрезная схема тоже обладает положительными отличительными свойствами, к примеру, при неразрезной схеме расходуется меньше стали на сами прогоны.

Прогоны, расположенные на скате, с учётом кровли с большим уклоном всегда работают на изгиб в двух плоскостях. Устойчивость прогонов достигается за счёт крепления кровельных плит или за счёт присоединения настила к прогонам, с учётом всех сил трения между ними. Прогоны принято крепить к поясам ферм, используя коротыши из уголков и гнутые элементы из листовой стали.

Решетчатые прогоны

В качестве прогонов применяют прокатные или холодногнутые швеллеры, при шаге ферм более 6 м - решетчатые прогоны. Простой и наиболее легкой конструкцией решетчатого прогона является прутково-шпренгельный прогон с решеткой и нижним поясом из круглой стали. Недостаток такого прогона в сложности контроля сварных швов в узлах сопряжения прутков решетки с нижним поясом, а также в необходимости аккуратной транспортировки и монтажа.

Верхний пояс решетчатых прогонов в случае его большой жесткости из плоскости прогона следует рассчитывать на совместное действие осевого усилия и изгиба только в плоскости прогона, а в случае малой жесткости верхнего пояса из плоскости прогона необходимо рассчитывать верхний пояс на совместное действие осевого усилия и изгиба как в плоскости прогона, так и в перпендикулярной к ней плоскости. Гибкость верхнего пояса решетчатых, прогонов не должна превышать 120, а элементов решетки-150. Верхний пояс этого прогона состоит из двух швеллеров, а элементы решётки – из одиночного гнутого швеллера. Обычно раскосы фиксируются к верхнему поясу с помощью дуговой или контактной сварки.

Решетчатые прогоны рассчитывают как фермы с неразрезным верхним поясом, который всегда работает на сжатие с изгибом в одной или в двух плоскостях, в то время как другие элементы испытывают продольные усилия.

Система связей в покрытиях производственных зданий

Связи в покрытиях предназначены для обеспечения пространственной жесткости, устойчивости и неизменяемости каркаса здания, для восприятия горизонтальных ветровых нагрузок, действующих на торцы здания и фонари, горизонтальных тормозных усилий от мостовых опорных и подвесных кранов и передачи их на элементы каркаса.

Связи подразделяются на горизонтальные (продольные и поперечные) и вертикальные . Система связей зависит от высоты здания, величины пролета, шага колонн, наличия мостовых кранов и их грузоподъемности. Кроме того, конструкция всех видов связей, необходимость их установки, местоположение в покрытии определяется расчетом в каждом конкретном случае и зависит от вида несущих конструкций покрытия.

В данном разделе рассмотрены примеры устройства системы связей в покрытиях с плоскостными несущими конструкциями из металла, железобетона и дерева.

Связи в покрытиях с металлическими плоскостными несущими конструкциями

Система связей в покрытиях зданийс металлическимифермами зависит от типа ферм, шага стропильных конструкций, условий района строительства и других факторов. Она состоит из горизонтальных связей в плоскости верхних и нижних поясов стропильных ферм и вертикальных связей между фермами.

Горизонтальные связи по верхним поясам стропильных ферм чаще всего предусматривают только при наличии фонарей и располагают в подфонарном пространстве.

Горизонтальные связи в плоскости нижних поясов стропильных ферм предусмотрены двух типов. Связи первого типа состоят из поперечных и продольных связевых ферм, распорок и растяжек. Связи второго типа состоят только из поперечных связевых ферм, распорок и растяжек.

Поперечные связевые фермы располагают в торцах температурного отсека здания. При длине температурного отсека более 96 м устанавливают промежуточные поперечные связевые фермы через каждые 42-60 м.

Продольные горизонтальные связевые фермы по нижним поясам стропильных ферм для связей первого типа располагают в одно-, двух - и трехпролетных зданиях вдоль крайних рядов колонн. В зданиях с количеством пролетов более трех продольные связевые фермы располагают также и вдоль средних рядов колонн с таким расчетом, чтобы расстояние между смежными связевыми фермами не превышало двух-трех пролетов.

Связи первого типа являются обязательными в зданиях:

а) с мостовыми опорными кранами, требующими устройства галерей для прохода вдоль крановых путей;

б) с подстропильными фермами;

в) с расчетной сейсмичностью 7 - 9 баллов;

г) с отметкой низа стропильных конструкций более 24 м, (для однопролетных зданий - более 18 м);

д) в зданиях с кровлей по железобетонным плитам, оборудованных мостовыми опорными кранами общего назначения грузоподъемностью более 50 т при шаге ферм 6 м и грузоподъемностью более 20 т при шаге ферм 12 м;

е) в зданиях с кровлей по стальному профилированному настилу –

в одно - и двухпролетных зданиях, оборудованных мостовыми опорными кранами грузоподъемностью более 16 т и в зданиях с количеством пролетов более двух с мостовыми опорными кранами грузоподъемностью более 20 т.

В остальных случаях должны применяться связи второго типа , при этом при шаге стропильных ферм 12 м и наличии стоек продольного фахверка вдоль колонн крайних рядов следует предусматривать продольные связевые фермы.

Вертикальные связи располагают в местах размещения поперечных связевых ферм по нижним поясам стропильных ферм на расстоянии 6 (12) м друг от друга.

Монтажные крепления связей к конструкциям покрытия принимаются на болтах или на сварке в зависимости от величины силовых воздействий. Элементы связей разработаны из горячекатаных и гнутосварных профилей.

На рисунках 5.2.1 – 5.2.10 приведены схемы расположения связей в покрытии с фермами из парных уголков. Связи в покрытиях с применением широкополочных тавров, широкополочных двутавров и круглых труб решаются аналогично. Конструктивное решение вертикальных связей пролетом 6 и 12 м приведены на рисунке 5.2.11, 5.2.12

Связи в покрытии с фермами из замкнутых гнутосварных профилей типа «Молодечно» приведены на рисунках 5.2.13 - 5.2.16.

За основу неизменяемости покрытия в горизонтальной плоскости принят сплошной диск, образованный профилированным настилом, закрепленным по верхним поясам ферм. Настил развязывает верхние пояса ферм из плоскости по всей длине и воспринимает все горизонтальные силы, передающиеся на покрытие.

Нижние пояса ферм развязаны из плоскости вертикальными связями и распорками, которые передают все усилия с нижнего пояса ферм на верхний диск покрытия. Вертикальные связи устанавливаются через 42 – 60 м по длине температурного отсека.

В зданиях с конструкциями покрытия типа «Молодечно» с уклоном верхнего пояса 10% расположение вертикальных связей и распорок аналогично приведенному на рисунках 5.2.14 - 5.2.16. Вертикальная связь в этом случае выполняется V-образной пролетом 6 м (рис. 5.2.11).

Рис.5.2.5. Схемы расположения вертикальных связей в покрытиях

с применением профилированного настила

(разрезы обозначены на рис. 5.2.1, 5.2.2)

Рис.5.2.8. Схема расположения вертикальных связей в покрытиях с применением железобетонных плит

Металлический каркас промышленного здания состоит из ряда "плоских" элементов жестких и хорошо воспринимающих нагрузки в своей плоскости, но гибких в перпендикулярном направлении (рамы, подстропильные и промежуточные стропильный фермы и др.). Основное назначение связей - объединять плоские элементы в пространственную систему, способную воспринимать нагрузки действующие на здание в любом направлении.

Во-вторых, связи служат, чтобы обеспечивать устойчивость сжатых и сжато-изогнутых стержней верхних поясов ферм, колонн и др. Опасность потери устойчивости таких элементов объясняется тем, что стержни металлического каркаса имеют большие длины и относительно небольшие компактные поперечные размеры. Связи раскрепляют сжатые элементы в промежуточных точках, уменьшая расчетные длины элементов в направлении этих раскреплений.

Различают следующие основные виды связей, применяемых в металлическом каркасе промышленного здания

1) поперечные связи между верхними поясами ферм (сквозные ригели рам в дальнейшем будут называться "фермами")(рис. 1) 2) вертикальные связи между фермами (рис.9); 3) продольные и поперечные связи, расположенные в плоскости нижних поясов ферм (рис.II); 4) вертикальные связи между колоннами (рис. 22). Рассмотрим компоновку, назначение и конструктивные решения узлов связей на примерах зданий с различными покрытиями.

I. ПОПЕРЕЧНЫЕ СВЯЗИ МЕЖДУ ВЕРХНИМИ ПОЯСАМИ ФЕРМ

1.1. Верхний пояс фермы, как любой сжатый стержень, может потерять устойчивость, если усилие в нем достигнет критического значения. Потеря устойчивости в таком случае произойдет в одной из двух плоскостей:


Рис.1. Поперечные связи между верхними поясами ферм, По 2-2 - вертикальные связи a) в плоскости фермы - стержень, потерявший устойчивость, останется в плоскости фермы. Это значит, что при взгляде на ферму сверху потери устойчивости не будет заметна. Как видно из рис.2, расчетная длина при проверке устойчивости верхнего пояса "и плоскости" фермы соответствует расстоянию - между узлами, то есть длине одной панели;

Рис.2. Расчетная длина верхнего пояса в плоскости фермы, (пунктир)

б) потери устойчивости верхнего пояса с выходом его из плоскости фермы показать лишь в плане. Предположим, что связи не поставлены. Тогда потеря устойчивости произойдет по схеме, приведенной на рис.За. Прогоны, которые обычно крепятся к верхнему, поясу фермы шарнирно (с помощью болтов), сами по себе, без связей, не будут препятствовать потери устойчивости ферм, так как после потери устойчивости верхние пояса ферм выпучатся, а прогоны свободно переместятся в новое положение. При этом расстояние между фермами (пролет прогонов) сохранится.

Иная картина устойчивости будет наблюдаться, если поставить связи. Связи могут быть крестовые - с двумя диагоналями (рис. 3,6) и облегченные, треугольные (рис. 3, в), т.е. с одной диагональю. Сжатые диагонали, очевидно, выключаются из работы, потеряв устойчивость, а растянутые будут препятствовать искажению прямоугольников, не дадут им превратиться в параллелограммы. Следовательно, в точках крепления диагоналей пояс фермы сохранит свое первоначальное положение и расчетная длинй его "из плоскости" будет равна участку "Л-В" (рис,3, в), т.е. двум панелям. Верхние пояса всех ферм, связанных с этими точками с помощью прогонов (или распорок по фонарям), будут иметь такие же расчетные длины, как и пояса двух ферм, непосредственно закрепленных связями, т.е. участки А" -В", A""-B"" имеют расчетные длины, равные двум панелям.

Рис.3. Потеря устойчивости верхних поясов ферм; а) в покрытии без связей; б) схема натяжения и выключения раскосов связей; в) обеспечение устойчивости веря поясов с помощью стержневых связей

Обратим внимание на ошибку, которая может быть допущена при определении расчетной длины верхнего пояса из плоскости фермы. На рис.3в прогон пересекает диагональ связей в точке "f". Создается впечатление, что прогон прикреплен к диагонали связей, и расчетную длину верхнего пояса из плоскости фермы казалось бы, можно брать равной панели. Однако это неверно: прогоны и связи расположены в разных уровнях, между ними "f" имеется зазор (рис. 7)

1.2. В зданиях с фонарем (рис.4) верхний пояс не раскреплен из плоскости ферма на большом участке, т.к. под фонарем нет прогонов. Если считать, что конструкций стенового ограждения фонаря вместе с прогоном фиксируют точку "Б", то расчётная длина верхнего пояса из плоскости "Б~Б". Введение распорки в середине пролета фонаря уменьшает расчетную длину из плоскости фермы (рис.4б) до трех панелей.


Рис.4. Расчетные длины верхнего пояса под фонарем:
а) без распорок - 6 панелей;
б) с одной распоркой - 3 панели;
в) при шаге ферм 12 м вводится промежуточный связевой пояс ПП

В качестве распорки используется верхний пояс вертикальных связей (раздел 2), но могут быть применены специально предназначенные для этой,цели парные уголки или другие профили,

1.3. В последнее время с целью экономии металла принято функции связей по верхним поясам возлагать на кровельный настил, который при его надежном прикреплении к фермам может обеспечивать устойчивость верхних поясов из плоскости ферм.

Так в беспрогонных покрытиях с железобетонным настилом устойчивость верхних поясов из плоскости ферм обеспечивается приваркой закладных частей настила к верхним поясам. В таком случае расчетная длина верхнего пояса из. плоскости фермы может быть принята равной длине одной панели фермы. 0 приварке настила к поясам ферм должна быть сделаны указания, в примечании на чертеже.

Во время возведения здания эти прикрепления плит к поясам должны контролироваться. При этом требуется составлять акт на скрытые работы. Профилированный настил также может выполнять роль связей по верхним поясам, если его прикрепить е помощью дюбелей к прогонам.

Лучшим конструктивным решением при использовании профилированного настила в качестве связей будет такое, при котором прогоны крепятся к ферме так, что верхняя полка прогона находится в одним уровне с верхней полкой пояса фермы. В этом случае настил пристреливается дюбелями по четырем своим сторонам - к прогонам и верхним поясам ферм. Для удобства крепления прогонов к фермам в этом случае можно использовать фермы покрытия не с треугольной решеткой, а с нисходящими раскосами (рис.5).


Рис.5. Использование профилированного настила в качестве связей по верхнему поясу:
а) ферма покрытия с нисходящими раскосами;
б) вариант решения узла опирания прогона в одном уровне с верхним поясом фермы

При экономических преимуществах замены связей настилом, прикрепленным к поясам, покрытия оказываются лишенными одной немаловажной функции, выполняемой связями. Связи по верхним поясам кроме того, что обеспечивают устойчивость ферм, являются также фиксаторами правильного взаимного положения ферм во время монтажа. Поэтому при монтаже покрытия без связей рекомендуется предусматривать использование временных (съемных) инвентарных связей, т.е. монтажных кондукторов.

При наличии фонарей в покрытиях, где настил служит в качества связей по верхнему поясу, под фонарем для обеспечения устойчивости пояса устраиваются связи в виде диагоналей при шаге ферм 6 м или в виде неполных диагоналей при шаге ферм 12 м (рис.6). При этом расчетная длина верхнего пояса ферм при проверке устойчивости из плоскости принимается равной двум панелям.


Рис.6. Обеспечение устойчивости верхних поясов ферм под фонарями в покрытиях, где функции связей выполняет; настил t а) шаг ферм б м, б) шаг ферм 12 м

1.4. В покрытиях с шагом ферм 12 м и с прогонами пролетом 12 м связевая ферма принимается шириной 6 м. В этом случае вводится дополнительный промежуточный пояс из соответствующих профилей (рис.4, в) и конструируются связи так же, как, если бы шаг ферм был 6 м.

1.5. Расстояние по длина здания между стержневыми связями по верхнему поясу ферм не должно превышать 144 м. Поэтому в длинных зданиях связи ставятся не только в крайних панелях блока каркаса но и в середине или третях длины блока (рис. I).

Эти требования объясняются тем, что устойчивость ферм, рай-положенных далеко о,т связей, не всегда может быть надежно обеспечена, т.к, прогоны или распорки, прикрепляющие фермы к связевым блокам, допускают в узлах известную смещаемость вследствие разности диаметров болтов и отверстий. С увеличением числа узлов, т.е. с удаленнем связей, эта смешаемость суммируется и увеличивается, что уменьшает надежность обеспечения устойчивости ферм, расположенных далеко от связей.

Конструкции некоторых узлов связей, выполненных из уголковых и гнутосварных профилей, и их прикрепление к фермам показано на рис, 7, 8.

Итак, связи, расположенные в плоскости верхних поясов ферм, имеют следующее основное назначение: при загружении покрытия предотвращают потерю устойчивости этих поясов из плоскости ферм, то есть уменьшают расчетную длину верхних поясов при проверке устойчивости их из плоскости ферм.

2. ВЕРТИКАЛЬНЫЕ СВЯЗИ МЕЖДУ ФЕРМАМИ

Эти связи называют также монтажными, так как их главное назначение - удерживать в проектном положении поставленные на опоры фермы, не дать одиночным фермам опрокинуться во время монтажа от ветровых и случайных воздействий, т.к. центр тяжести фермы находится выше уровня, опор (рис. 9, а).

Вертикальные связи в виде цепочки распорок и ферм ставят по длине здания между стойками стропильных ферм. Связевые фермы для экономии металла соединяют между собой верхними и нижними распорками (рис.10). Таким образом, фермы вертикальных связей являются дисками, а прикрепленные к ним стержни-распорки обеспечивают промежуточные стропильные фермы или ригели рам от опрокидывания (рис.9б). Решетка связевых ферм, как правило, может быть произвольной (рис.9в) и выполняется из одиночных уголков или из прямоугольных гнуто-сварных труб. В покрытиях с шагом ферм 12 м, со шпренгельными прогонами или с настилом, усиленным шпренгелями, верхний пояс фермы вертикальных связей может иметь вид, показанный на рис.9г.

Вертикальные связи по ширине пролета располагаются на опорах (между колоннами) и в пролете между стойками.ферм не реже, чем через 15 м, т.е. при пролете здания 36 м они будут расположены в плоскостях двух стоек.



Рис.7. Прикрепление связей к верхним поясам ферм

Рис.8. Узлы покрытия и связей при шаге ферм 12 м (см. рис. 6);
а) Прикрепление связей, выполненных из замкнутых профилей к фермам с поясами из широкополочных двутавров
б) Узел Б



Рис.9. Вертикальные связи между фермами:
а) положение центра тяжести,
б) фермы-диски и распорки,
в) схемы решеток ферм,
г) связи в покрытиях с шагом ферм 12 м и со шпренгельыми прогонами

Фермы - диски вертикальных связей ставятся с шагом 30-36 м по длине здания. Стойки уголковых ферм, к которым крепятся связи в верхнем и нижнем узлах, принимаются крестового сечения (рис.10).

Связи могут прикрепляться также к специальныо предусмотренным для этогй цели вертикальным фасонкам . В составе блока при крупноблочном монтаже вертикальные связи являются необходимыми элементами, обеспечивающими неизменяемость блока.

Рис.10. Узел прикрепления верхнего пояса фермы вертикальных связей к стойке стропильной фермы. Аналогично выполняется нижний узел

ПРОДОЛЬНЫЕ ГОРИЗОНТАЛЬНЫЕ СВЯЗИ ПО НИЖНИМ ПОЯСАМ РИГЕЛЕЙ

Контур связей, расположенных в плоскости нижних сквозных ригелей, можно расчленить на продольные и поперечные связи (рис.11). Назначение продольных связей сводится к следующему:

3.1. Продольные связи воспринимают поперечные горизонтальные крановые воздействия, т.е воспринимают внецентренное приложение вертикального давления крана на колонну, вызывающее горизонтальное смещение рамы, а также поперечное торможение крана, приложенное к одной раме (рис.12а) и передает эти воздействия на соседние рамы, менее нагруженные (рис.12б). Таким образом обеспечивается пространственность каркаса при работе его на местные нагрузки, вызывающие горизонтальные смещения ригеля рамы.




Рис.11. Связи по нижним поясам ригелей рам


Рис.12. Схема воспринятая поперечных горизонтальных нагрузок продольными связями по нижним поясам:
а) смешение рам от вертикального внецентренного приложения крановой нагрузки и от торможения;
б) передача поперечных нагрузок на связи

3.2. Отметим, что боковая нагрузка от ветра передается одинаково на все рамы, вызывая одинаковое смешение их. Поперечных сил между рамами в этом случае не возникает и поэтому в каркасах с шагом рам 6 м продольные связи не воспринимают ветровой нагрузки,

При шаге колонн 12 м и более в каркасах, имеющих стойки фахверка (стенового каркаса), продольные связи работают на эту нагрузи; Они являются верхними горизонтальными опорами стоек фахверка. Таким образом, в этом случае продольные связи передают усилия от ветровых нагрузок со стоек фахверка на соседние рамы (рис.13) и связи нагружены усилиями от ветровой нагрузки по длине шага рам.

Рис.13. Передача ветровой нагрузки со стоек фахверка на продольные связи

3.3. В крайних, панелях ригеля вследствие того, что жестко защемленный ригель на опоре испытывает изгибающие моменты противоположного знака по отношению к знаку момента в пролете, дается сжатие нижнего пояса (рис.14).




Рис.14. Сжатие в нижнем поясе ригеля вблизи опор

Закрепить нижний пояс от потери устойчивости из плоскости ригеля здесь можно лишь с помощью продольных связей (точка "f" рис.14). Устойчивость нижнего пояса в плоскости ригеля обеспечивается либо развитием момента инерции сечения пояса (в этой панели он может быть принят из двух неравнобоких уголков, составленных большими полками), либо введением дополнительной подвески.

3.4. В многопролетных зданиях с кранами тяжелого режима работы (7К, 8К) продольные связи в виде горизонтальных ферм ставятся друг от друга на расстояние не более двух пролетов (рис.15)


Рис.15. Связи по нижним поясам ригелей в многопролетном каркасе с кранами тяжелого режима работы (7К, 8К)

В многопролетных зданиях с кранами среднего режима работы при грузоподъемности до 50 т, при пролетах не более 36 м и с высотой до 25 м, а также с шагом рам 6 м, допускается не делать продольных связей по нижнему поясу. Однако распорки и тяжи, обеспечивающие устойчивость нижних поясов из плоскости ферм, должны быть поставлены в каждом пролете (рис.16).

Рис.16. Связи по нижним поясам Б каркасе с кранами среднего режима работы (4К - 6К)

4. ПОПЕРЕЧНЫЕ СВЯЗИ В ПЛОСКОСТИ НИЖНИХ ПОЯСОВ РИГЕЛЕЙ

4.1. Эти связи служат для передачи усилий от ветровых нагрузок, направленных в торец здания, со стоек торцевого фахверка на вертикальные связи между колоннами (рис.17) (передача давления показана стрелками).

Рис.17. Схема передачи ветровых нагрузок с торца здания на связи

4.2. Вместе с продольными связями они образуют замкнутый контур, увеличивающий общую жесткость каркаса здания.

Поперечные связи, как правило, ставятся под связями по верхним поясам, создавая с ними пространственные поперечные блоки, к которым с помощью прогонов, распорок вертикальных связей и продольных связей крепятся промежуточные фермы (ригели).

На рис.18, 19 показаны узлы крепления горизонтальных связей, выполненных из уголков и прямоугольных гнуто-сварных труб к поясам ферм. Следует отметить, что в каркасах с тяжелым режимом работы кранов 7К, 8К и при больших крановых нагрузках связи прикрепляются к фермам с помощью сварки (т.е. болтовые узлы должны быть обварены) либо с помощью высокопрочных болтов.


Рис.18. Конструкции уголковых связей по нижним пояс

5. ВЕРТИКАЛЬНЫЕ СВЯЗИ МЕЖДУ КОЛОННАМИ

Различают верхний ярус вертикальных связей между колоннами (связи, расположенные выше подкрановых балок) и нижний я ниже балок (рис.20).




Рис.19. Узел связей по нижнему поясу из прямоугольных гнуто-сварных профилей

Рис.20. Схема вертикальных связей между колоннами

5.1. Связи верхнего яруса имеют следующее назначение:
а) усилия от ветра, направленного в торец здания, передаются на связи верхнего яруса с торцевых поперечных связей, расположенных в плоскости нижних поясов, а затем, по растянутым подкосам, эти усилия передаются на подкрановые балки",
б) связи верхнего яруса обеспечивают -устойчивость колонн "из плоскости" рам. Таким образом, расчётная длина надкрановой части колонны (рис.20, пунктир) из плоскости рамы равна высоте этой части колонны;
в) вместе о нижним ярусом связей при монтаже удерживают крепленные анкерами колонны oт опрокидывания.

5.2. Вертикальные связи нижнего яруса
На связи нижнего яруса возлагается функции:
а) передавать ветровые усилия от связей верхнего яруса и от продольного торможения кранов (рис.20);
б) обеспечивать устойчивость подкрановой части колонии из плоскости рамы;

в) служить в качестве монтажных связей при установке колонн. В зданиях большой высоты связи нижнего яруса имеют дополнительную распорку между колоннами - (рис.21,

a). Ее назначение - уменьшить расчетную длину подкрановой части колонны из плоскости рамы. К этому компоновочному приему прибегают в том случае, когда при расчете проверю устойчивости колонны "из плоскости "не дает удовлетворительных результатов вследствие большой гибкости колонны (из плоскости рамы.).

Схемы вертикальных связей могут быть различными в зависимости от шага колонн, от необходимости использования проема между колоннами и т.п. (рис.21б).


Рис.21. Схемы вертикальных связей нижнего яруса:
а) дополнительная распорка для уменьшения расчетной длины колонны из плоскости рамы;
б) варианты связей между колоннами

Прикреплять связи нижнего яруса к подкрановым балкам в пролете не следует, так как при движении крана может возникнуть сжатие раскосов связей, а следовательно, их выключение. Связи верхнего яруса могут прикрепляться к тормозным балкам болтами с овальными отверстиями в вертикальном направлении.

Рис.22. Конструкции вертикальных связей между колоннами при шаге колонн 6 м

Рис. 23. Вертикальные связи между колоннами при шаге колонн 12 м: С- овальные отверстия в узле В, допускающие прогибы подкрановой балки без нагружения связей верхнего яруса; t - тормозная балка

В вертикальной плоскости верхний ярус связей обычно располагается, по оси надкрановой части колонны, а нижние связи должны быть двойными и их следует располагать в плоскостях как наружной, так и внутренней ветвей подкрановой части колонны (рис.22). Если имеется фахверк, то связи устанавливаются в плоскости фахверка и стыкуются со стойкой фахверка в среднем узле. По длине здания связи нижнего яруса размещаются в середине температурного блока (рис.22), но ни в крем случае не по концам, Размещение связей в середине здания обеспечивает свободную деформацию продольных элементов при колебаниях температуры (удлинение или укорочение подкрановых балок, продольных связей и др.).

Рис.24. Средний узел вертикальных связей (см.рис.23):
Г- крепление связей и стойке фахверка f на монтажной сварке, Д- на высокопрочных болтах, Q- ребра жесткости, 4-4 - расчетное сечениее фасонки. Болты рассчитывается на осевое усилие в диагонали связей и момент от эксцентриситета "а"

6. РАСЧЕТ СВЯЗЕЙ

В большинстве видов связей затруднительно точно определить величины усилий, которые будут ими восприниматься. Поэтому сечения элементов связей, как правило, подбираются по предельной гибкости . Для элементов, о которых заранее известно, что они будут испытывать сжатие, рекомендуется принимать предельную гибкость 200.

По известным усилиям рассчитывается вертикальные, связи между колоннами, а также поперечные связи по нижнему поясу ригеля и продольные горизонтальные связи (в случае учета пространственной работы каркаса).

  1. СНиП II-23-81*. Стальные конструкции,- М., Стройиздат, 1988, - 96 с.
  2. Беленя Е.И. и др. Металлические конструкции.- М., Стройиздат, 1989.- С.272-279.
  3. СНиП 2.01.07.-85. Нагрузки и воздействия.- М., Стройиздат, 1989.
  4. ЦНИИ Проектстальконструкция им. Мельникова, Типовые строительные конструкции, изделия и узлы. Серия 2.440-2, Узлы конструкций производственных зданий промышленных предприятий: Выпуск 4. Узлы тормозных конструкций и вертикальных связей. Чертежи КМ. Москва, 1989. 49 с.
  5. Пособие по проектированию стальных конструций (к СНиП 23-81*) - М., Центральный институт типового проектирования, 1989 -148с.

Просмотров