Момент пары сил формула. Пара сил и ее свойства

Парой сил называется система двух равных по модулю, параллельных и направленных в противоположные стороны сил, действующих на абсолютно твердое тело (рис. 15).

Наикратчайшее расстояние (перпендикуляр) между линиями действия сил называется плечом пары α.

Действие пары сил на тело сводится к вращательному эффекту, который зависит:

1) от модуля F сил пары и длины ее плеча α;

2) положения плоскости действия пары;

Моментом пары называется величина, равная взятому с соответствующим знаком произведению модуля одной из сил пары на ее плечо:

M = ±Fα. (1.7)

Алгебраическая сумма моментов пары сил относительно любого центра, лежащего в плоскости ее действия, не зависит от выбора этого центра и равна моменту пары:

m 0 (F ) + m 0 (F ′) = M .

Теорема об эквивалентности пар. Не изменяя оказываемого на тело действия, можно пару сил, приложенную к абсолютно твердому телу, заменить любой другой парой, лежащей в той же плоскости и имеющей тот же момент. Из этой теоремы вытекают следующие свойства пары сил:

1) данную пару, не изменяя оказываемого ею на тело действия, можно перенести куда угодно в плоскости действия пары;

2) у данной пары, не изменяя оказываемого ею на тело действия, можно произвольно менять модуль силы или длину плеча, сохраняя неизменным ее момент.

Теорема. Действие пары сил на твердое тело не изменится, если пару сил перенести из данной плоскости в любую другую плоскость, ей параллельную .

Сложение пар, лежащих в одной плоскости

Теорема о сложении пар. Система пар, лежащих в одной плоскости, эквивалентна одной паре, лежащей в той же плоскости и имеющей момент, равный алгебраической сумме моментов слагаемых пар:

М m i .

Для равновесия плоской системы пар необходимо и достаточно, чтобы алгебраическая сумма этих пар была равна нулю:

Σ m i = 0 .

Данное равенство является условием равновесия пар.

ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ

1. Реакция связи приложена к телу или к связи?

2. Перечислите основные типы связей

3. Сколько компонент реакции имеет каждый тип связей и куда они направлены?

4 Сформулируйте понятие «алгебраический момент силы».

5. Что значит «плечо силы»?

6. Как определяется знак алгебраического момента силы?

7. Что такое «пара сил»?

8 Что значит «плечо пары»?

9. Как определяется алгебраический момент пары и его знак?

Как известно, сила – основная мера взаимодействия двух тел. Приложим к свободному телу две равные по величине, противоположно направленные силы, которые лежат на параллельных прямых (рис. 3.4). Главный вектор этой системы сил равен нулю, то есть поступательно двигаться это тело не будет. Будет ли оно находиться в равновесии? (Представьте, что вы приложили такую систему сил к водопроводному крану). Какое движение начнется??? Вращательное. То есть надо иметь меру вращательного действия такой системы двух сил:

3.Момент пары сил .

Для измерения совместного вращательного действия сил пары и относительно произвольной точки О (рис. 3.5) найдем сумму моментов этих сил относительно точки О , вспомнив формулу (3.2):

, (3.3)

или .

Этот вектор перпендикулярен к плоскости действия пары сил и направлен туда, откуда видно, что вращение тела парой происходит против хода часовой стрелки (рис.3.6).

Величина векторного момента (вектора – момента) пары сил, как модуль векторного произведения, равна где α – угол между векторами и (рис. 3.6). Обозначим , где d – плечо пары.

Тогда . (3.4)

Если пары сил размещены в одной плоскости, то величины их моментов находятся по формуле (3.4), а векторы этих моментов будут коллинеарные. В этом случае целесообразнее пользоваться не векторным понятием момента пары сил, а алгебраическим .

Пример 1 . Определить опорные реакции балки (рис.1, a ), концы которой шарнирно закреплены. Балка нагружена парой сил с моментом кНм .

Рис.1

Решение . Прежде всего необходимо наметить направление реакций опор (рис. 1, б). Так как к балке приложена пара сил, то и уравновесить ее можно только парой сил. Следовательно, реакции опор равнымежду собой по величине, параллельны, но противоположно направлены. Заменим действие опор их реакциями. Правая опора А - плоскость, следовательно, направление опорной реакции R A перпендикулярно этой плоскости, а опорная реакция R B ей параллельна и противоположно направлена. Балка находится в равновесии, поэтому сумма моментов пар сил,приложенных к ней, равна нулю:

откуда

КН.

Ответ: кН.

Пример 2 . Брус АВ с левой шарнирно-подвижной опорой и правой шарнирно-неподвижной нагружен тремя парами (рис.1), моменты которых кНм , кНм ,кНм . Определить реакции опор.

Рис.1

Решение. 1. На брус действуют пары сил, следовательно, и уравновесить их можно только парой, т. е. в точках А и В со стороны опор на брус должны действовать реакции опор, образующие пару сил. В точке А у бруса шарнирно-подвижная опора, значит, реакция направлена перпендикулярно опорной поверхности, т. е. в данном случае перпендикулярно брусу. Обозначим эту реакцию R A и направим ее вверх. Тогда в точке В со стороны шарнирно-неподвижной опоры действует также вертикальная сила R B , но вниз.

2. Исходя из выбранного направления сил пары (R A , R B ) ее момент (или ).

3. Составим уравнение равновесия пар сил:

Подставив в этоуравнение значения моментов, получим

Отсюда R A = 5 кН. Так как силы R A и R B образуют пару, то R B = R A = 5 кН.

Ответ : кН.

Пример 3 . Груз весом G = 500 Н подвешен к канату, намотанному на барабан радиусом r = 10 см. Барабан удерживается парой сил, приложенных к концам рукоятки длиной l = 1,25 м, скрепленной с барабаном и лежащей в одной плоскости с веревкой. Определить реакцию оси О барабана и силы пары F , F " , если они перпендикулярны к рукоятке (рис. 1, a ).

Рис.1

Решение . Рассмотрим равновесие сил, приложенных к барабану: вертикальной силы веса G , пары, составленной силами F и F" , и реакции R о цилиндрического шарнира О , величина и линия действия которой неизвестны. Так как пару сил может уравновесить только пара сил, лежащая в той же плоскости, то силы G и R о должны составлять пару сил, уравновешиваемую парой F , F" . Линия действия силы G известна, реакцию R o шарнира О направим параллельно силе G в противоположную ей сторону (рис. 1, б). Модули сил должны быть равны, т. е.

R o = G = 500 H .

Алгебраическая сумма моментов двух пар сил, приложенных к барабану, должна быть равна нулю:

где l - плечо пары F , F" ;

r - плечо пары G , R o .

Находим модули сил F :

Н.

Ответ: Н; Н.

Пример 4 . Балка длиной АВ = 10 м имеет шарнирно-неподвижную опору А и шарнирно-подвижную опору В с наклонной опорной плоскостью, составляющей с горизонтом угол = 30°. На балку действуют три пары сил, лежащие в одной плоскости, абсолютные величины моментов которых:

кНм ; кНм ; кНм .

Определить реакции опор (рис. 1, a ).


Рис.1

Решение . Рассмотрим равновесие сил, приложенных к балке АВ : трех пар сил, реакции опоры R B , направленной перпендикулярно к опорной плоскости, и реакции опоры R A , линия действия которой неизвестна (рис. 1, б). Так как нагрузка состоит только из пар сил, лежащих в одной плоскости, то реакции опор R A и R B должны составить пару сил, лежащую в той же плоскости и уравновешивающую задаваемые пары сил.

Направим реакцию R A параллельно реакции R B , чтобы силы R A и R B составили пару сил, направленную в сторону, обратную вращению часовой стрелки (рис. 1, б).

Для четырех пар сил, приложенных к балке, используем условие равновесия пар сил, лежащих в одной плоскости:

где

Отсюда

кН.

Знак «плюс» в ответе указывает, что принятое направление реакций опор R A и R B совпадает с истинным:

кН.

Ответ : кН.

Пример 5 . Два диска диаметрами D 1 = 200 мм и D 2 = 100 мм закреплены на валу (рис. 1). Ось вала перпендикулярна их плоскости. Диски вращаются с постоянной угловой скоростью. Силы F 1 и F 2 расположены в плоскости дисков и направлены по касательной к ним. Определить силу F 2 , если F 1 = 500 Н.

Рис.1

Решение. Вал с дисками, согласно условию задачи, вращается с постоянной угловой скоростью, следовательно, вращающие моменты должны быть уравновешены, т. е. Так как ось вала перпендикулярна плоскости действия сил, то

.

(Знак «минус» показывает направление момента против часовой стрелки, если смотреть вдоль оси со стороны ее положительного направления).

отсюда

Н.

При расчете на прочность валов приходится определять моменты внутренних сил в сечениях, перпендикулярных оси вала. Результирующий момент внутренних сил относительно продольной оси вала принято называть крутящим моментом и обозначать отлично от моментов внешних сил, которые принято называть вращающими моментами.

Ответ: Н.

Пример 6 . К прямоугольному параллелепипеду, длина ребер которого а =100 см, b = 120 см, с = 160 см, приложены три взаимно уравновешивающиеся пары сил F 1 , F " 1 , F 2 , F" 2 и F 3 , F" 3 . Силы первой пары имеют модуль F 1 = F" 1 = 4 Н. Определить модули остальных сил (рис.1).

Рис.1

Решение . При равновесии трех пар сил, не лежащих в одной плоскости, геометрическая сумма моментов этих пар должна быть равна нулю, т. е. треугольник их моментов должен быть замкнут:

Строим в точке О момент каждой пары сил, направляя его перпендикулярно к плоскости действия пары так, чтобы, смотря ему навстречу, видеть соответствующую пару сил стремящейся вращать эту плоскость в сторону, обратную вращению часовой стрелки:

Модули моментов:

Нсм ;

Строим замкнутый треугольник моментов пар сил.

Из D ЕОС

Из треугольника моментов

Нсм ;

Нсм .

Модули сил, составляющих пары:

Н;

Н.

Ответ : Н; Н.

Пример 7 . Концы балки шарнирно закреплены в точках А и В (рис. 1, а). К балке приложены пары сил, моменты которых равны кНм ; кНм . Ось балки АВ совпадает с плоскостью действия пары сил. Расстояние между опорами l = 3 м. Определить опорные реакции балки, не учитывая силу тяжести балки.

Рис.1

Решение . Так как к балке приложены 2 пары сил, то уравновесить их можно только парой сил. Значит, реакции опор равны между собой по величине, параллельны, но противоположно направлены. Заменяем действия опор их реакциями (рис. 1 , б). Балка находится в равновесии, поэтому сумма моментов пар сил, противоположных к ней, равна нулю:

кН.

Ответ : кН.

Пример 8 . Вал, на котором закреплены три зубчатых колеса, вращается вокруг неподвижной оси. Силы F 1 , F 2 и F 3 расположены в плоскостях, перпендикулярных оси вращения, и направлены по касательным к окружностям зубчатых колес, как схематически показано на рис. 1. Силы F 2 = 400 H , F 3 = 200 H . Диаметры зубчатых колес = 100 мм, = 200 мм, = 400 мм. Вычислить величину моментов сил F 1 , F 2 и F 3 относительно оси вращения и модуль силы F 1 , приложенной к диску диаметром D 1 .


Рис.1

Решение . Так как ось вала перпендикулярна плоскости действия сил, то:

Нм;

Нм.

(Знак «минус» для момента показывает направление момента по часовой стрелке, если смотреть вдоль оси со стороны её положительного направления).

Вращающие моменты должны быть уравновешены:

тогда

Нм;

Н.

Ответ : Нм, Нм, Н × м, Н.

Пример 9 . Груз G при помощи рычага создает прижимное усилие F на деталь А (рис. 1, a ). Плечи рычага а = 300 мм, b = 900 мм. Определить силу тяжести груза, если прижимное усилие равно 400 Н.

Рис.1

Решение . На расчётной схеме рычага (рис. 1, б) к точке А приложен вес груза G , к точке В – сила реакции шарнира , к точке С приложена сила реакции равная по модулю прижимному усилию F (3-й закон Ньютона).

Составим уравнение равновесия рычага относительно точки В :

при этом момент силы относительно точки В равен 0.

Ответ : Н.

Пример 10 . Определить прижимное усилие F на деталь А (рис. 1, a ), создаваемое при помощи рычага и груза G = 300 H . Отношение плеч рычага b / a = 3.

Рис.1

Решение. Будем рассматривать равновесие рычага. Для этого действие опор заменим их реакциями (рис. 1, б).

Прижимное усилие F на деталь А по модулю равно силе реакции (это следует из 3-го закона Ньютона).

Запишем условие равновесия рычага относительно точки В :

Ответ : Н.

Пример 11. Три диска жестко закреплены на валу (рис. 1, а). Ведущий диск 1 передает момент Нм. Момент, приложенный к ведомому диску 2, Нм. Диаметры дисков D 1 = 0,2 м, D 2 = 0,4 м, D 3 = 0,6 м. Определить величину и направление момента на диске 3 при условии, что вал вращается равномерно. Вычислить также окружные силы F 1 , F 2 и F 3 , приложенные к соответствующим дискам. Эти силы направлены по касательным к окружности диска и расположены в плоскостях, перпендикулярных оси вала.

Рис.1

Решение . Вал с дисками, согласно условию задачи, вращается равномерно, следовательно, вращающие моменты должны быть уравновешены (рис. 1, б):

Нм.

Определим окружные силы F 1 , F 2 , F 3 :

, , Н, кН;

, , Н, кН;

, , Н, Н.

Ответ: Н × м, Н, Н, Н.

Пример 12 . К стержню, опирающемуся в точках А и В (рис. 1, а), приложены две пары сил, моменты которых кНм и кНм . Расстояние а = 0,4 м. Определить реакции упоров А и В , не учитывая силы тяжести стержня. Плоскость действия пар сил совпадает с осью стержня.

Рис.1

Решение . Так как к стержню приложены только пары сил, то уравновесить их можно только парой сил. Значит, реакции опор равны между собой по величине, но противоположно направлены (рис. 1, б).

Стержень находится в равновесии, поэтому

, ,

кН,

знак «минус» указывает на направление момента пар сил и .

Ответ : кН, кН.

Пример 13 . На рычаг в точке С действует сила F = 250 H (рис. 1, a ). Определить силу, приложенную к тормозным дискам в точке А , если длина рычага CB = 900 мм, расстояние CD = 600 мм.

Рис.1

Решение. Заменим действия опор на рычаг их реакциями (рис. 1, б). Уравнение равновесия рычага:

;

Н.

Сила, приложенная к тормозным дискам в точке А , равна по модулю (по третьему закону Ньютона).

Ответ: Н.

Пример 14 . Колодочный тормоз удерживает в покое вал, к которому приложена пара сил с моментом Нм. Диаметр тормозного диска D = 400 мм (рис. 1 , а). Определить, с какой силой надо прижимать колодки к тормозному диску, чтобы вал оставался в покое. Коэффициент трения покоя между тормозным диском и колодками принять f = 0,15.

Рис.1

Решение . Чтобы вал оставался в покое, необходимо равенство моментов М и (рис. 1, б):

где - момент, создаваемый парой сил трения.

Силу трения определим, зная коэффициент трения f покоя между тормозным диском и колодками:

Тогда

Н.

Ответ : кН.

Пример 15 . На валу жестко закреплены два диска диаметрами D 1 = 220 мм и D 2 = 340 мм (рис. 1, a ). К первому диску приложена сила F 1 = 500 Н. Линия действия силы расположена в плоскости, перпендикулярной оси вала. Определить величину и направление силы, которую надо приложить ко второму диску, чтобы вал вращался равномерно. Вычислить вращающие моменты на каждом диске.


Рис.1

Решение . Вращающие моменты на дисках:

(Знак «минус» для момента показывает направление момента против часовой стрелки, если смотреть вдоль оси со стороны её положительного направления).

Так как вал вращается равномерно, то вращающие моменты должны быть уравновешены (рис. 1, б):

Н× м,Н× м,

, , Н.

Направление силы противоположно направлению силы

Ответ: Н× м,Н× м, Н.

Пример 16. Груз кН, поднятый с помощью троса, намотанного на барабан диаметром м , удерживается в покое храповым механизмом, состоящим из зубчатого колеса с расчётным диаметром м и упорного рычага (рис. 1, а). Весом частей механизма, а также трением пренебречь. Определить силу, нагружающую упорный рычаг.

Рис.1

Решение. Будем рассматривать равновесие блока. На него наложена внешняя связь – упорный рычаг. Заменим её реакцией . В данной задаче одна неизвестная , которая по третьему закону Ньютона равна реакции (рис. 1, б).

,

откуда имеем:

, кН.

кН.

Ответ: кН.

Пример 17. Сила, приложенная человеком к концу рукоятки ручного рычажного пресса, равна F = 120 H . Приняв АС = 220 мм и АВ = 40 мм , определить силу давления поршня на прессуемый материал (рис. 1, а). Крепление в точках А и В шарнирное. Весом частей механизма, а также трением пренебречь.

Рис.1

Решение . Сила давления поршня равна силе реакции , действующей со стороны поршня на рукоятку (рис. 1, б). Составим уравнение моментов сил для рукоятки:

. Н.

Ответ: Н.

Пример 18. В лентопротяжном механизме прибора лента держится в натянутом состоянии с помощью двуплечего рычага АВС (рис. 1, a ) . На одном конце рычага расположен нажимной ролик, другой конец оттянут пружинной лентой с силой упругости 4 Н . Определить силу давления ролика на ленту, считая, что общая нормаль в точке их касания расположена вертикально. Принять АВ = 50 мм и ВС = 10 мм . Весом частей механизма, а также трением пренебречь.

Рис.1

Решение . На рычаг АВС наложены внешние связи. Освободимся от них, заменяя их действие силами реакции (рис.1, б). В данной задаче одна неизвестная – сила давления ролика на ленту , которая равна силе реакции

Составим уравнение моментов сил:

Откуда имеем:

Н.

Ответ: Н.

Пример 19. Груз весом 950 Н равномерно поднимается при помощи ворота, состоящего из барабана диаметром 0,14 м и рукоятки с плечом 0,4 м (рис. 1). Для данного положения механизма определить силу F , прикладываемую рабочим, считая ее направленной вертикально. Весом частей механизма, а также трением пренебречь.

Рис.1

Решение . В данной задаче одна неизвестная – сила (рис. 1, б). Для её нахождения напишем уравнение моментов сил:

, , .

Н.

Ответ: Н.

Пример 20. Для перевода однородной колонны АВ из горизонтального положения в вертикальное один ее конец зацепили тросом подъемного крана, а к другому концу приставили упор (рис. 1, а). Определить силу натяжения троса в момент начала подъема колонны, если ее вес 3 кН и длина 4 м .

Рис.1

Решение . Для нахождения силы натяжения троса составим уравнение моментов сил (рис. 1, б):

;

КН.

Ответ : кН.

Система двух равных и параллельных сил , направлен­ных в противоположные стороны и не лежащих на одной прямой , называется парой сил . Примером такой системы сил могут служить усилия, передаваемые от рук шофера на рулевое колесо автомобиля.

Пара сил имеет очень большое значение в практике. Именно поэтому свойства пары как специфической меры механического взаимодействия тел изучается отдельно .

Сумма сил пары равна нулю

Р - Р" = 0 (рис. а ),

т. е. пара сил не имеет равнодействующей . Несмотря на это тело под действием пары сил не находится в равновесии.

Действие пары сил на твердое тело, как показывает опыт, состоит в том, что она стремится вращать это тело.

Способность пары сил производить вращение количественно определяется моментом пары , равным произведе­нию силы на кратчайшее расстояние (взятое по перпен­дикуляру к силам) между линиями действия сил .

Обозначим момент пары М , а кратчайшее расстояние между силами а , тогда абсолютная величина момента (рис. а )

М = Ра = Р"а .

Кратчайшее расстояние между линиями действия сил называется плечом пары, поэтому можно сказать, что момент пары сил по абсолютной величине равен произве­дению одной из сил пары на ее плечо.

Эффект действия пары сил полностью определяется ее моментом . Поэтому пару сил можно изображать дугооб­разной стрелкой , указывающей направление вращения (см.рис.).

Так как пара сил не имеет равнодействующей, ее нельзя уравновесить одной силой .

В Международной системе единиц (СИ) силу измеряют в ньютонах , а плечо в метрах . Соответственно момент пары в системе СИ измеряется в ньютонометрах (н·м) или в единицах, кратных ньютонометру: кн·м, Мн·м и т. д.

Будем считать момент пары сил положительным , если пара стремится повернуть тело по направлению хода часовой стрелки (рис. а ) и отрицательным , если пара стремится вращать тело против хода часовой стрелки (рис. б ).

Принятое правило знаков для моментов пар условно ; можно было бы принять противоположное пра­вило. При решении задач во избежание путаницы всегда нужно принимать одно определенное правило знаков .

1. Пара сил - система двух сил, приложенных к телу в двух разных точках:

Равных по модулю

Параллельных

Противоположно направленных

2. Плечо пары сил кратчайшее расстояние между линиями действия сил пары.

Момент пары сил

Момент пары сил - произведение модуля любой силы на плечо пары (модуль силы х плечо)

Свойства пары сил

1. Сумма проекций на любую ось сил пары равна нулю

F 2 cosα – F 1 cosα = 0

2. Сумма моментов сил пары относительно любой точки плоскости равна моменту пары.

mom o () = - F 1 d = - Fd

mom o () = + F 2 l = +Fl

mom o () + mom o () = - Fd + Fl = - F(d-l) = - Fh

Следовательно, пару сил нельзя заменить равнодействующей.

Самостоятельная работа обучающегося по теме 1.3. (1 час все )

1. Составить глоссарий основных понятий по теме «Пара сил» - арх, ‘эзс – 1 час

1. Решение задач на определение моментов сил относительно точки: авто – 1час

Тема 1.4. Плоская система произвольно расположенных сил

– (4 час арх, 2час авто, эзс)

Основные понятия

1. Плоская система сил – система сил, линии действия которых лежат в одной плоскости.

2. На плоскости могут быть приложены силы:

А) произвольно расположенные;

Б) пары сил;

В) силы, сходящиеся в одной точке.

3. Плоская система произвольно расположенных сил – все силы или линии их действия не пересекаются в одной точке.

Приведение плоской системы сил к заданному центру

1.Пусть на твёрдое тело действует система сил

2. Приложим в точке Опо 2 уравновешенные силы :

А) одна равна и параллельна заданной:

Б) другая сила равна заданной, но противоположно направлена

3. В итоге на тело действует:

А) система сходящихся сил

Б) система пар сил с моментами

4. Систему сходящихся сил заменяем равнодействующей

Или в соответствии с тем, что и т.д.

5. В соответствии со вторым свойством пары сил найдём алгебраическую сумму моментов всех пар

М о =m 1 +m 2 + …+m n

Лемма Пуансо

1. В результате произвольную плоскую систему сил можно заменить :

- одной силой , равной геометрической сумме всех сил, приложенных в произвольно выбранном центре и

- моментом , равным алгебраической сумме моментов присоединенных пар

2. Принятые определения:

А) точка о – центр приведения

Б) главный вектор – векторR, равный геометрической сумме всех сил. Его значение не зависит от выбора центра приведения.

В) главный момент – момент М О, равный алгебраической сумме моментов присоединённых пар. Его значение зависит от выбора центра приведения (величина плеча будет меняться).

Частные случаи приведения

1.R 0 =0,M 0 ≠0 – система эквивалентна паре сил с моментом, равным главному моменту системы, который в этом случае не зависит от выбора центра приведения;

2. R 0 ≠0,M 0 =0 – система эквивалентна равнодействующей R. Главный вектор в данном случае – является равнодействующей.

3. R 0 ≠0,M 0 ≠0 – система эквивалентна равнодействующей R, приложенной в новом центре приведения, расположенном от прежнего на расстоянии d = М о \R

4. R=0,M 0 =0 – плоская система сил находится в равновесии;

Теорема Вариньона (о моменте равнодействующей плоской системы сил)

Момент равнодействующей плоской системы сил относительно произвольного центра О равен алгебраической сумме моментов всех сил системы относительно этого центра.

Аналитические уравнения равновесия плоской системы сил

    Условие равновесия выражается тремя уравнениями – основные уравнения равновесия :

2. Варианты записи уравнений равновесия – в зависимости от расположения сил

Класссификация нагрузок

    Сосредоточенная

    Распределённая: по линии, по поверхности, по объёму

    Изгибающий момент

Балочные системы

1. Объект решения задач статики – балки (или балочные системы)

2. Балка – деталь в виде прямого бруса с опорами в двух (или более) точках.

Виды опор

1. Шарнирно-подвижная : вращение вокруг своей оси (шарнир) + поступательное перемещение (подвижная)

2. Шарнирно-неподвижная : вращение вокруг своей оси (шарнир)

3. Жёсткая заделка (защемление ): препятствует любому перемещению.

Решение задач на определение опорных реакций

С помощью трёх уравнений равновесия определяют реакции опор (если число реакций связи не превышает трёх):

1. Показать нагрузки

2. Обозначают нагрузки

3. Освобождаются от опор и заменяют их действие на балку реакциями

4. Составляют уравнение равновесия

5. Решают уравнения равновесия и определяют из них опорные реакции

6. Проверка решения

Определение усилий в стержнях плоских ферм – вырезанием узлов

1. Аналитический способ

2. Графический способ – построением диаграммы Максвелла – Кремоны

Элементы теории трения

ТЕМА 1.5. ЭЛЕМЕНТЫ ТЕОРИИ ТРЕНИЯ (авто - 1 час)

Самостоятельная работа обучающегося (авто – 1час)

1. Решение задач по индивидуальным заданиям

1. Понятие о трении

Сила трения возникает при соприкосновении тел и препятствует передвижению одного тела по поверхности другого.

2. Виды сил трения:

А) трение скольжения

Б) трение скольжения

3. Трение скольжения – сопротивление, возникающее при относительном перемещении одного тела по поверхности другого.

4. Законы трения :

А) Сила трения F тр направлена в сторону, противоположную относительной скорости скольжения

Б) Сила трения не зависит от площади контактирующих поверхностей

В) Модуль силы трения пропорционален нормальному давлению (чем больше нормальное давление, тем больше сила трения).

5. По рисунку:

А) сила тяжести mg– вниз (чем большеmg, тем больше опорная реакцияN(вектор)

Б) тело движется вниз = сила трения направлена вверх по наклонной плоскости

В) гладкая поверхность = опорная реакция N(вектор) направлена перпендикулярна плоскости

Г) по аксиоме 3 строим диагональ параллелограмма R(равнодействующая)

6. Виды сил трения скольжения :

А) сила трения при покое F тр f o N

Б) сила трения при движении F тр fN

N– сила нормального давления

f o – коэффициент трения покоя

f– коэффициент трения скольжения – зависит от скорости скольжения тел.

Оба коэффициента зависят от материала и физического состояния поверхностей

7. Трение качения – сопротивление, возникающее при качении одного тела к другому.

8. Виды связей :

А) идеальные (без трения)

Б) реальные (с трением)

Самостоятельная работа обучающихся – 3час эзс, 4час арх,

1. Решить задачи по определению опорных реакций для однопролётной балки по вариантам

2. Решить задачи на определение усилий в стержнях фермы по вариантам

3. Сравнить способы определения усилий, сделать краткий анализ о преимуществах и недостатках каждого метода - результат оформить в виде таблицы

Авто – 2час

1. Выполнение расчётно­-графической работы на определение опорных реакций балочных систем

Просмотров