Формулы для нахождения модуля силы упругости. Купить диплом о высшем образовании недорого

Упругие силы и деформации

Определение 1

Сила, возникающая в теле в результате его деформации и стремящаяся вернуть его в начальное состояние, называется силой упругости.

Все тела материального мира подвержены деформациям различного рода. Деформации возникают в силу перемещения и, как следствие, изменения положения частиц тела друг относительно друга. По степени обратимости можно выделить:

  • упругие, или обратимые деформации;
  • пластические (остаточные), или необратимые деформации.

В случаях, когда тело по завершении воздействия сил, приводящих к деформации, восстанавливает свои первоначальные параметры, деформация называется упругой.

Стоит отметить, что при упругой деформации воздействие внешней силы на тело не превышает предела упругости. Таким образом, силы упругости компенсируют внешнее воздействие на тело.

В ином случае деформация является пластической или остаточной. Тело, подвергшееся воздействия такого характера не восстанавливает начальные размеры и форму.

Упругие силы, возникающие в телах, не способны полностью уравновесить силы, вызывающие пластическую деформацию.

В целом, различают ряд простых деформаций:

  • растяжение (сжатие);
  • изгиб;
  • сдвиг;
  • кручение.

Как правило, деформации нередко представляют собой совокупность нескольких представленных типов воздействия, что позволяет свести все деформации к двум наиболее распространенным типам, а именно к растяжению и сдвигу.

Характеристики сил упругости

Модуль силы упругости, действующий на единицу площади, есть физическая величина, названная напряжением (механическим).

Механическое напряжение, в зависимости от направления приложения силы, может быть:

  • нормальным (направленным по нормали к поверхности, $σ$);
  • тангенциальным (направленным по касательной к поверхности, $τ$).

Замечание 1

Степень деформации характеризуется количественной мерой – относительной деформацией.

Так, например, относительное изменение длины стержня можно описать формулой:

$ε=\frac{\Delta l}{l}$,

а относительное продольное растяжение (сжатие):

$ε’=\frac{\Delta d}{d}$, где:

$l$ – длина, а $d$ – диаметр стержня.

Деформации $ε$ и $ε’$ протекают одновременно и имеют противоположные знаки, в силу того, что при растяжении изменение длины тела положительно, а изменение диаметра отрицательно; в случаях с сжатием тела знаки меняются на противоположные. Их взаимосвязь описывается формулой:

Здесь $μ$ – коэффициент Пуассона, зависящий от свойств материала.

Закон Гука

По своей природе, упругие силы относятся к электромагнитным, не фундаментальным силам, и, следовательно, они описываются приближенными формулами.

Так, эмпирически установлено, что для малых деформаций относительное удлинение и напряжение пропорциональны, или

Здесь $E$ – коэффициент пропорциональности, называемый также модулем Юнга. Он принимает такое значение, при котором относительное удлинение равно единице. Модуль Юнга измеряется в ньютонах на квадратный метр (паскалях).

Согласно закону Гука удлинение стержня при упругой деформации пропорционально действующей на стержень силе, или:

$F=\frac{ES}{l}\Delta l=k\Delta l$

Значение $k$ получило название коэффициента упругости.

Деформация твердых тел описывается законом Гука лишь до достижения предела пропорциональности. С повышением напряжения деформация перестает быть линейной, но, вплоть до достижения предела упругости, остаточные деформации не возникают. Таким образом, Закон Гука справедлив исключительно для упругих деформаций.

Пластические деформации

При дальнейшем возрастании воздействующих сил, возникают остаточные деформации.

Определение 2

Значение механического напряжения, при котором происходит возникновение заметной остаточной деформации, названо пределом текучести ($σт$).

Далее степень деформации возрастает без увеличения напряжения вплоть до достижения предела прочности ($σр$), когда происходит разрушение тела. Если графически изобразить возвращение тела в первоначальное состояние, то область между точками $σт$ и $σр$ получит название области текучести (области пластической деформации). В зависимости от размера этой области все материалы делятся на вязкие, у которых область текучести значительна, и хрупкие, у которых область текучести минимальна.

Отметим, что прежде мы рассматривали воздействие сил, приложенных по направлению нормали к поверхности. Если же внешние силы были приложены по касательной, возникает деформация сдвига. При этом в каждой точке тела возникает тангенциальное напряжение, определяемое модулем силы на единицу площади, или:

$τ=\frac{F}{S}$.

Относительный сдвиг в свою очередь может быть вычислен по формуле:

$γ=\frac{1}{G}τ$, где $G$ – модуль сдвига.

Модуль сдвига принимает такое значение тангенциального напряжения, при котором величина сдвига равна единице; измеряется $G$ так же, как и напряжение, в паскалях.

Инструкция

Присоедините к телу динамометр и потяните за него, деформировав тело. Сила, которую покажет динамометр, будет по модулю равна силе упругости, действующей на тело. Найдите коэффициент жесткости, используя Гука, который говорит о том, что сила упругости прямо пропорциональна его удлинению и направлена в сторону, противоположную деформации. Рассчитайте коэффициент жесткости, поделив значение силы F на удлинение тела x, которое измерьте линейкой или рулеткой k=F/x. Чтобы найти удлинение деформированного тела вычтите длину деформированного тела от его первоначальной длины. Коэффициент жесткости в Н/м.

Если нет динамометра, подвесьте к деформируемому телу груз известной массы. Следите, чтобы тело деформировалось упруго и не разрушилось. В этом случае вес груза будет равен силе упругости, действующей на тело, коэффициент жесткости которого нужно найти, например, . Рассчитайте коэффициент жесткости, поделив произведение массы m и ускорения свободного падения g≈9,81 м/с² на удлинение тела x, k=m g/x. Удлинение измерьте по методике, предложенной в предыдущем .

Пример. Под грузом 3 кг пружина длиной 20 см стала 26 см, определите ее . Сначала найдите удлинение пружины в . Для этого от длины удлиненной пружины, вычтите ее длину в нормальном состоянии х=26-20=6 см=0,06 м. Вычислите жесткость, используя соответствующую формулу k=m g/x=3 9,81/0,06≈500 Н/м.

А теперь несколько советов. Чтобы снизить жесткость воды в вашем , добавляйте в него дистиллированную или чистую дождевую воду, используйте специальные растения, например, элодею и роголистник. Кроме того, воду можно выморозить или хорошо прокипятить. В первом случае ее наливают в невысокий таз и выставляют на мороз. Как только она промерзнет до половины емкости, лед пробивают и, растопив, используют . Во втором – в течение часа кипятят воду в эмалированной , после чего дают остыть и используют две трети «верхней» воды .

Видео по теме

В результате деформации физического тела всегда возникает сила, которая ей противодействует, стремясь вернуть тело в начальное положение. Определить эту силу упругости в простейшем случае можно по закону Гука.

Инструкция

Сила упругости , действующая на деформированное тело, возникает как следствие электромагнитного взаимодействия между его атомами. Существуют различные виды деформации: /растяжение, сдвиг, изгиб. Под воздействием внешних сил разные части тела движутся по-разному, отсюда искажение и сила упругости , которая направлена в сторону прежнего состояния.

Деформация растяжения/сжатия направлением внешней силы вдоль оси предмета. Это может быть стержень, пружина, и другое тело, имеющее длинную форму. При искажении изменяется поперечное сечение, а сила упругости пропорциональна взаимному смещению частиц тела:Fупр = -k ∆x.

Эта называется законом Гука, однако применяется она не всегда, а лишь при относительно малых значениях ∆х. Величина k называется жесткостью и выражается в Н/м. Этот коэффициент зависит от исходного материала тела, а также формы и размеров, он пропорционален поперечному сечению.

При деформации сдвига объем тела не изменяется, но его слои меняют свое друг относительно друга. Сила упругости равна произведению коэффициента упругости при сдвиге, находящемуся в прямой зависимости от поперечного сечения тела, на величину угла между осью и касательной, в направлении которой действует внешняя сила:Fупр = D α.

Определение

Силу, которая возникает в результате деформации тела и пытающаяся вернуть его в исходное состояние, называют силой упругости .

Чаще всего ее обозначают ${\overline{F}}_{upr}$. Сила упругости появляется только при деформации тела и исчезает, если пропадает деформация. Если после снятия внешней нагрузки тело восстанавливает свои размеры и форму полностью, то такая деформация называется упругой.

Современник И. Ньютона Р. Гук установил зависимость силы упругости от величины деформации. Гук долго сомневался в справедливости своих выводов. В одной из своих книг он привел зашифрованную формулировку своего закона. Которая означала: «Ut tensio, sic vis» в переводе с латыни: каково растяжение, такова сила.

Рассмотрим пружину, на которую действует растягивающая сила ($\overline{F}$), которая направлена вертикально вниз (рис.1).

Силу $\overline{F\ }$ назовем деформирующей силой. От воздействия деформирующей силы длина пружины увеличивается. В результате в пружине появляется сила упругости (${\overline{F}}_u$), уравновешивающая силу $\overline{F\ }$. Если деформация является небольшой и упругой, то удлинение пружины ($\Delta l$) прямо пропорционально деформирующей силе:

\[\overline{F}=k\Delta l\left(1\right),\]

где в коэффициент пропорциональности называется жесткостью пружины (коэффициентом упругости) $k$.

Жесткость (как свойство) - это характеристика упругих свойств тела, которое деформируют. Жесткость считают возможностью тела оказать противодействие внешней силе, способность сохранять свои геометрические параметры. Чем больше жесткость пружины, тем меньше она изменяет свою длину под воздействием заданной силы. Коэффициент жесткости - это основная характеристика жесткости (как свойства тела).

Коэффициент жесткости пружины зависит от материала, из которого сделана пружина и ее геометрических характеристик. Например, коэффициент жесткости витой цилиндрической пружины, которая намотана из проволоки круглого сечения, подвергаемая упругой деформации вдоль своей оси может быть вычислена как:

где $G$ - модуль сдвига (величина, зависящая от материала); $d$ - диаметр проволоки; $d_p$ - диаметр витка пружины; $n$ - количество витков пружины.

Единицей измерения коэффициента жесткости в Международной системе единиц (Си) является ньютон, деленный на метр:

\[\left=\left[\frac{F_{upr\ }}{x}\right]=\frac{\left}{\left}=\frac{Н}{м}.\]

Коэффициент жесткости равен величине силы, которую следует приложить к пружине для изменения ее длины на единицу расстояния.

Формула жесткости соединений пружин

Пусть $N$ пружин соединены последовательно. Тогда жесткость всего соединения равна:

\[\frac{1}{k}=\frac{1}{k_1}+\frac{1}{k_2}+\dots =\sum\limits^N_{\ i=1}{\frac{1}{k_i}\left(3\right),}\]

где $k_i$ - жесткость $i-ой$ пружины.

При последовательном соединении пружин жесткость системы определяют как:

Примеры задач с решением

Пример 1

Задание. Пружина в отсутствии нагрузки имеет длину $l=0,01$ м и жесткость равную 10 $\frac{Н}{м}.\ $Чему будет равна жесткость пружины и ее длина, если на пружину действовать силой $F$= 2 Н? Считайте деформацию пружины малой и упругой.

Решение. Жесткость пружины при упругих деформациях является постоянной величиной, значит, в нашей задаче:

При упругих деформациях выполняется закон Гука:

Из (1.2) найдем удлинение пружины:

\[\Delta l=\frac{F}{k}\left(1.3\right).\]

Длина растянутой пружины равна:

Вычислим новую длину пружины:

Ответ. 1) $k"=10\ \frac{Н}{м}$; 2) $l"=0,21$ м

Пример 2

Задание. Две пружины, имеющие жесткости $k_1$ и $k_2$ соединили последовательно. Какой будет удлинение первой пружины (рис.3), если длина второй пружины увеличилась на величину $\Delta l_2$?

Решение. Если пружины соединены последовательно, то деформирующая сила ($\overline{F}$), действующая на каждую из пружин одинакова, то есть можно записать для первой пружины:

Для второй пружины запишем:

Если равны левые части выражений (2.1) и (2.2), то можно приравнять и правые части:

Из равенства (2.3) получим удлинение первой пружины:

\[\Delta l_1=\frac{k_2\Delta l_2}{k_1}.\]

Ответ. $\Delta l_1=\frac{k_2\Delta l_2}{k_1}$

Как известно, физика изучает все законы природы: начиная от простейших и заканчивая наиболее общими принципами естествознания. Даже в тех областях, где, казалось бы, физика не способна разобраться, все равно она играет первоочередную роль, и каждый малейший закон, каждый принцип — ничто не ускользает от нее.

Вконтакте

Именно физика является основой основ, именно эта лежит в истоках всех наук.

Физика изучает взаимодействие всех тел, как парадоксально маленьких, так и невероятно больших. Современная физика активно изучает не просто маленькие, а гипотетические тела, и даже это проливает свет на суть мироздания.

Физика поделена на разделы, это упрощает не только саму науку и понимание ее, но и методологию изучения. Механика занимается движением тел и взаимодействием движущихся тел, термодинамика — тепловыми процессами, электродинамика — электрическими.

Почему деформацию должна изучать механика

Говоря о сжатиях или растяжениях, следует задать себе вопрос: какой раздел физики должен изучать этот процесс? При сильных искажениях может выделяться тепло, быть может, этими процессами должна заниматься термодинамика? Иногда при сжатии жидкостей, она начинает кипеть, а при сжатии газов — образуются жидкости? Так что же, деформацию должна познавать гидродинамика? Или молекулярно-кинетическая теория?

Всё зависит от силы деформации, от ее степени. Если деформируемая среда (материал, который сжимают или растягивают) позволяет, а сжатие невелико, есть смысл рассматривать этот процесс как движение одних точек тела относительно других.

А раз вопрос касается сугубо , значит, заниматься этим будет механика.

Закон Гука и условие его выполнения

В 1660 году известный английский ученый Роберт Гук открыл явление, при помощи которого можно механически описать процесс деформаций.

Для того чтобы понимать при каких условиях выполняется закон Гука, ограничимся двумя параметрами:

  • среда;
  • сила.

Есть такие среды (например, газы, жидкости, особо вязкие жидкости, близкие к твердым состояниям или, наоборот, очень текучие жидкости) для которых описать процесс механически никак не получится. И наоборот, существуют такие среды, в которых при достаточно больших силах механика перестает «срабатывать».

Важно! На вопрос: «При каких условиях выполняется закон Гука?», можно дать определенный ответ: «При малых деформациях».

Закон Гука, определение : деформация, которая возникает в теле, прямо пропорциональна силе, которая вызывает эту деформацию.

Естественно, это определение подразумевает, что:

  • сжатия или растяжения невелики;
  • предмет упругий;
  • он состоит из материала, при котором в результате сжатия или растяжения нет нелинейных процессов.

Закон Гука в математической форме

Формулировка Гука, которую мы привели выше, дает возможность записать его в следующем виде:

где — изменение длины тела вследствие сжатия или растяжения, F — сила, приложенная к телу и вызывающая деформацию (сила упругости), k — коэффициент упругости, измеряется в Н/м.

Следует помнить, что закон Гука справедлив только для малых растяжений.

Также отметим, что он при растяжении и сжатии имеет один и тот же вид. Учитывая, что сила — величина векторная и имеет направление, то в случае сжатия, более точной будет такая формула:

Но опять-таки, все зависит от того куда будет направлена ось, относительно которой вы проводите измерение .

В чем кардинальная разница между сжатием и растяжением? Ни в чем, если оно незначительно.

Степень применимости можно рассмотреть в таком виде:

Обратим внимание на график. Как видим, при небольших растяжениях (первая четверть координат) долгое время сила с координатой имеет линейную связь (красная прямая), но затем реальная зависимость (пунктир) становится нелинейной, и закон перестает выполняться. На практике это отражается таким сильным растяжением, что пружина перестает возвращаться в исходное положение, теряет свойства. При еще большем растяжении происходит излом, и разрушается структура материала.

При небольших сжатиях (третья четверть координат) долгое время сила с координатой имеет тоже линейную связь (красная прямая), но затем реальная зависимость (пунктир) становится нелинейной, и всё вновь перестает выполняться. На практике это отражается таким сильным сжатием, что начинает выделяться тепло и пружина теряет свойства. При еще большем сжатии происходит «слипание» витков пружины и она начинает деформироваться по вертикали, а затем и вовсе плавиться.

Как видим формула, выражающая закон, позволяет находить силу, зная изменение длины тела, либо, зная силу упругости, измерить изменение длины:

Также, в отдельных случаях можно находить коэффициент упругости. Для того, чтобы понять как это делается, рассмотрим пример задачи:

К пружине подсоединен динамометр. Ее растянули, приложив силу в 20 , из-за чего она стала иметь длину 1 метр. Затем ее отпустили, подождали пока прекратятся колебания, и она вернулась к своему нормальному состоянию. В нормальном состоянии ее длина составляла 87, 5 сантиметров. Давайте попробуем узнать, из какого материала сделана пружина.

Найдем численное значение деформации пружины:

Отсюда можем выразить значение коэффициента:

Посмотрев таблицу, можем обнаружить, что этот показатель соответствует пружинной стали.

Неприятности с коэффициентом упругости

Физика, как известно, наука очень точная, более того, она настолько точна, что создала целые прикладные науки, измеряющие погрешности. Будучи эталоном непоколебимой точности, она не может себе позволить быть нескладной.

Практика показывает, что рассмотренная нами линейная зависимость, является ничем иным как законом Гука для тонкого и растяжимого стержня. Лишь в качестве исключения можно применять его для пружин, но даже это является нежелательным.

Оказывается, что коэффициент k — переменная величина, которая зависит не только от того из какого материала тело, но и от диаметра и его линейных размеров.

По этой причине, наши умозаключения требуют уточнений и развития, ведь иначе, формулу:

нельзя назвать ничем иным как зависимостью между тремя переменными.

Модуль Юнга

Давайте попробуем разобраться с коэффициентом упругости. Этот параметр, как мы выяснили, зависит от трех величин :

  • материала (что нас вполне устраивает);
  • длины L (что указывает на его зависимость от);
  • площади S.

Важно! Таким образом, если нам удастся каким-то образом «отделить» из коэффициента длину L и площадь S, то мы получим коэффициент, полностью зависящий от материала.

Что нам известно:

  • чем больше площадь сечения тела, тем больше коэффициент k, причем зависимость линейная;
  • чем больше длина тела, тем меньше коэффициент k, причем зависимость обратно пропорциональная.

Значит, мы можем, коэффициент упругости записать таким образом:

причем Е — новый коэффициент, который теперь точно зависит исключительно от типа материала.

Введем понятие “относительное удлинение”:

Следует признать, что эта величина более содержательна, чем , поскольку она отражает не просто на сколько пружина сжалась или растянулась, а во сколько раз это произошло.

Поскольку мы уже «ввели в игру» S, то введем понятие нормального напряжения, которое записывается таким образом:

Важно! Нормальное напряжение представляет собой долю деформирующей силы на каждый элемент площади сечения.

Закон Гука и упругие деформации

Вывод

Сформулируем закон Гука при растяжении и сжатии : при малых сжатиях нормальное напряжение прямо пропорционально относительному удлинению.

Коэффициент Е называется модулем Юнга и зависит исключительно от материала.

Темы кодификатора ЕГЭ: силы в механике, сила упругости, закон Гука.

Как мы знаем, в правой части второго закона Ньютона стоит равнодействующая (то есть векторная сумма) всех сил, приложенных к телу. Теперь нам предстоит изучить силы взаимодействия тел в механике. Их три вида: сила упругости, гравитационная сила и сила трения. Начинаем с силы упругости.

Деформация.

Силы упругости возникают при деформациях тел. Деформация - это изменение формы и размеров тела. К деформациям относятся растяжение, сжатие, кручение, сдвиг и изгиб.
Деформации бывают упругими и пластическими. Упругая деформация полностью исчезает после прекращения действия вызывающих её внешних сил, так что тело полностью восстанавливает форму и размеры. Пластическая деформация сохраняется (быть может, частично) после снятия внешней нагрузки, и тело уже не возвращается к прежним размерам и форме.

Частицы тела (молекулы или атомы) взаимодействуют друг с другом силами притяжения и отталкивания, имеющими электромагнитное происхождение (это силы, действующие между ядрами и электронами соседних атомов). Силы взаимодействия зависят о расстояний между частицами. Если деформации нет, то силы притяжения компенсируются силами отталкивания. При деформации изменяются расстояния между частицами, и баланс сил взаимодействия нарушается.

Например, при растяжении стержня расстояния между его частицами увеличиваются, и начинают преобладать силы притяжения. Наоборот, при сжатии стержня расстояния между частицами уменьшаются, и начинают преобладать силы отталкивания. В любом случае возникает сила, которая направлена в сторону, противоположную деформации, и стремится восстановить первоначальную конфигурацию тела.

Сила упругости - это сила, возникающая при упругой деформации тела и направленная в сторону, противоположную смещению частиц тела в процессе деформации. Сила упругости:

1. действует между соседними слоями деформированного тела и приложена к каждому слою;
2. действует со стороны деформированного тела на соприкасающееся с ним тело, вызывающее деформацию, и приложена в месте контакта данных тел перпендикулярно их поверхностям (типичный пример - сила реакции опоры).

Силы, возникающие при пластических деформациях, не относятся к силам упругости. Эти силы зависят не от величины деформации, а от скорости её возникновения. Изучение таких сил
выходит далеко за рамки школьной программы.

В школьной физике рассматриваются растяжения нитей и тросов, а также растяжения и сжатия пружин и стержней. Во всех этих случаях силы упругости направлены вдоль осей данных тел.

Закон Гука.

Деформация называется малой , если изменение размеров тела много меньше его первоначальных размеров. При малых деформациях зависимость силы упругости от величины деформации оказывается линейной.

Закон Гука . Абсолютная величина силы упругости прямо пропорциональна величине деформации. В частности, для пружины, сжатой или растянутой на величину , сила упругости даётся формулой:

(1)

где - коэффициент жёсткости пружины.

Коэффициент жёсткости зависит не только от материала пружины, но также от её формы и размеров.

Из формулы (1) следует, что график зависимости силы упругости от (малой) деформации является прямой линией (рис. 1 ):

Рис. 1. Закон Гука

Коэффициент жёсткости - о угловой коэффициент в уравнении прямой . Поэтому справедливо равенство:

где - угол наклона данной прямой к оси абсцисс. Это равенство удобно использовать при экспериментальном нахождении величины .

Подчеркнём ещё раз, что закон Гука о линейной зависимости силы упругости от величины деформации справедлив лишь при малых деформациях тела. Когда деформации перестают быть малыми, эта зависимость перестаёт быть линейной и приобретает более сложный вид. Соответственно, прямая линия на рис. 1 - это лишь небольшой начальный участок криволинейного графика, описывающего зависимость от при всех значениях деформации .

Модуль Юнга.

В частном случае малых деформаций стержней имеется более детальная формула, уточняющая общий вид ( 1 ) закона Гука.

Именно, если стержень длиной и площадью поперечного сечения растянуть или сжать
на величину , то для силы упругости справедлива формула:

Здесь - модуль Юнга материала стержня. Этот коэффициент уже не зависит от геометрических размеров стержня. Модули Юнга различных веществ приведены в справочных таблицах.

Просмотров