Температура переохлаждения фреона. Величина переохлаждения у разных металлов

-> 13.03.2012 - Переохлаждение в холодильных установках

Переохлаждение жидкого хладагента после конденсатора – существенный способ увеличения холодопроизводительности холодильной установки. Понижение температуры переохлаждаемого хладагента на один градус соответствует повышению производительности нормально функционирующей холодильной установки примерно на 1% при том же уровне энергопотребления. Эффект достигается за счёт уменьшения при переохлаждении доли пара в парожидкостной смеси, которой является сконденсированный хладагент, поступающий к ТРВ испарителя даже из ресивера.

В низкотемпературных холодильных установках применение переохлаждения особенно эффективно. В них переохлаждение сконденсированного хладагента до значительных отрицательных температур позволяет увеличивать холодопроизводительность установки более чем в 1,5 раза.

В зависимости от размеров и конструкции холодильных установок реализовать этот фактор можно в дополнительном теплообменнике, устанавливаемом на жидкостной линии между ресивером и ТРВ испарителя, различными способами.

Переохлаждение хладагента за счёт внешних источников холода

  • в водяном теплообменнике за счёт использования доступных источников очень холодной воды
  • в воздушных теплообменниках в холодное время года
  • в дополнительном теплообменнике холодными парами от внешней/вспомогательной холодильной установки

Переохлаждение за счёт внутренних ресурсов холодильной установки

  • в теплообменнике - переохладителе за счёт расширения части фреона, циркулирующего в основном холодильном контуре - реализуется в установках с двухступенчатым сжатием и в сателлитных системах, а также в установках с винтовыми, поршневыми и спиральными компрессорами, имеющими промежуточные порты всасывания
  • в регенеративных теплообменниках холодными парами, всасываемыми в компрессор из основного испарителя - реализуется в установках, работающих на хладагентах с низким значением показателя адиабаты, главным образом HFC (ГФУ) и HFO (ГФО)

истемы переохлаждения, использующие внешние источники холода всё ещё довольно редко применяются на практике. Переохлаждение от источников холодной воды применяется, как правило, в тепловых насосах – водонагревательных установках, а также в средне- и высокотемпературных установках, где в непосредственной близости от них есть источник прохладной воды - используемые артезианские скважины, естественные водоёмы для судовых установок и т.д. Переохлаждение от внешних дополнительных холодильных машин реализуется крайне редко и только в очень больших установках промышленного холода.

Переохлаждение в воздушных теплообменниках применяется тоже весьма нечасто, так как эта опция холодильных установок пока малопонятна и непривычна для российских холодильщиков. Кроме того, проектировщиков смущают сезонные колебания значений повышения холодопроизводительности установок от применения в них воздушных переохладителей.

Системы переохлаждения, использующие внутренние ресурсы широко применяются в современных холодильных установках, причём с компрессорами практически всех типов. В установках с винтовыми и двухступенчатыми поршневыми компрессорами применение переохлаждения уверенно доминирует, так как возможность обеспечивать всасывание паров с промежуточным давлением реализована непосредственно в конструкции этих типов компрессоров.

Главной задачей, стоящей в настоящее время перед производителями холодильных и климатических установок различного назначения, является повышение производительности и эффективности входящих в них компрессоров и теплообменного оборудования. Эта идея не потеряла своей актуальности за всё время развития холодильного оборудования с момента зарождения этой отрасли промышленности до наших дней. Сегодня, когда стоимость энергоресурсов, а также размер парка эксплуатируемого и вводимого в эксплуатацию холодильного оборудования достигли таких впечатляющих высот, повышение эффективности систем производящих и потребляющих холод стало актуальной мировой проблемой. С учётом того, что проблема эта носит комплексный характер, действующие законодательства большинства европейских государств стимулируют разработчиков холодильных систем на повышение их эффективности и производительности.

Напомним, что VRF-системы (Variable Refrigerant Flow — системы с переменным расходом хладагента), являются сегодня самым динамично развивающимся классом систем кондиционирования воздуха. Мировой рост продаж систем класса VRF ежегодно увеличивается на 20-25 %, вытесняя с рынка конкурирующие варианты кондиционирования. Благодаря чему происходит этот рост?

Во-первых, благодаря широким возможностям систем Variable Refrigerant Flow: большой выбор наружных блоков — от мини-VRF до больших комбинаторных систем. Огромный выбор внутренних блоков. Длины трубопроводов — до 1000 м (рис. 1).

Во-вторых, благодаря высокой энергоэффективности систем. Инверторный привод компрессора, отсутствие промежуточных теплообменников (в отличие от водяных систем), индивидуальный расход хладагента — всё это обеспечивает минимальное энергопотребление.

В-третьих, положительную роль играет модульность конструкции. Нужная производительность системы набирается из отдельных модулей, что без сомнения очень удобно и повышает общую надёжность в целом.

Именно поэтому сегодня VRF-системы занимают как минимум 40 % мирового рынка систем центрального кондиционирования и эта доля с каждым годом растёт.

Система переохлаждения хладагента

Какая максимальная длина фреоновых трубопроводов может быть у сплит-системы кондиционирования? Для бытовых систем производительностью до 7 кВт холода она составляет 30 м. Для полупромышленного оборудования эта цифра может достигать 75 м (инверторный наружный блок). Для сплит-систем данное значение максимально, но для систем класса VRF максимальная длина трубопроводов (эквивалентная) может быть и значительно большей — до 190 м (суммарная — до 1000 м).

Очевидно, что VRF-системы принципиально отличаются от сплит-систем с точки зрения фреонового контура, и это позволяет им работать при больших длинах трубопроводов. Это отличие заключается в наличии специального устройства в наружном блоке, которое называется переохладитель хладагента или subcooler (рис. 2).

Прежде чем рассмотреть особенности работы систем VRF, давайте обратим внимание на схему фреонового контура сплит-систем и поймём, что происходит с хладагентом при больших длинах фреоновых трубопроводов.

Холодильный цикл сплит-систем

На рис. 3 изображён классический цикл фреона в контуре кондиционера в осях «давление-энтальпия». Причём это цикл для любых сплит-систем на фреоне R410a, то есть от производительности кондиционера или марки вид данной диаграммы не зависит.

Начнём с точки D, с начальными параметрами в которой (температура 75 °C, давление 27,2 бара) фреон попадает в конденсатор наружного блока. Фреон в данный момент — это перегретый газ, который сначала остывает до температуры насыщения (около 45 °C), затем начинает конденсироваться и в точке А полностью переходит из состояния газа в жидкость. Далее происходит переохлаждение жидкости до точки А (температура 40 °C). Считается, что оптимальная величина переохлаждения равна 5 °C.

После теплообменника наружного блока хладагент поступает на устройство дросселирования в наружном блоке — терморегулирующий вентиль либо капиллярную трубку, и его параметры меняются до точки B (температура 5 °C, давление 9,3 бара). Обратим внимание, что точка В находится в зоне смеси жидкости и газа (рис. 3). Следовательно, после дросселирования в жидкостный трубопровод поступает именно смесь жидкости и газа. Чем больше величина переохлаждения фреона в конденсаторе, тем больше доля жидкого фреона поступает во внутренний блок, тем выше КПД кондиционера.

На рис. 3 обозначены следующие процессы: В-С — процесс кипения фреона во внутреннем блоке с постоянной температурой около 5 °C; С-С — перегрев фреона до +10 °C; С -L — процесс всасывания хладагента в компрессор (происходят потери давления в газовом трубопроводе и элементах фреонового контура от теплообменника внутреннего блока до компрессора); L-M — процесс сжатия газообразного фреона в компрессоре с повышением давления и температуры; М-D — процесс нагнетания газообразного хладагента от компрессора до конденсатора.

Потери давления в системе зависят от скорости фреона V и гидравлической характеристики сети:

Что будет происходить с кондиционером при увеличении гидравлической характеристики сети (вследствие повышенной длины или большого количества местных сопротивлений)? Повышенные потери давления в газовом трубопроводе приведут к падению давления на входе в компрессор. Компрессор начнёт захватывать хладагент меньшего давления и, значит, меньшей плотности. Расход хладагента упадёт. На выходе компрессор будет выдавать меньшее давление и, соответственно, упадёт температура конденсации. Пониженная температура конденсации приведёт к пониженной температуре испарения и обмерзанию газового трубопровода.

Если повышенные потери давления будут происходить на жидкостном трубопроводе, то процесс даже более интересный: так как мы выяснили, что в жидкостном трубопроводе фреон находится в насыщенном состоянии, а точнее, в виде смеси жидкости и пузырьков газа, то любые потери давления будут приводить к небольшому вскипанию хладагента и увеличению доли газа.

Последнее повлечёт за собой резкое увеличение объёма парогазовой смеси и увеличению скорости движения по жидкостному трубопроводу. Повышенная скорость движения снова вызовет дополнительную потерю давления, процесс станет «лавинообразным».

На рис. 4 приведён условный график удельных потерь давления в зависимости от скорости движения хладагента в трубопроводе.

Если, например, потери давления при длине трубопроводов 15 м составляют 400 Па, то при увеличении длины трубопроводов в два раза (до 30 м) потери увеличиваются не в два раза (до 800 Па), а в семь раз — до 2800 Па.

Поэтому простое увеличение длины трубопроводов в два раза относительно стандартных длин для сплит-системы с On-Off-компрессором фатально. Расход хладагента упадёт в несколько раз, компрессор будет перегреваться и очень скоро выйдет из строя.

Холодильный цикл VRF-систем с переохладителем фреона

На рис. 5 схематично изображён принцип работы переохладителя хладагента. На рис. 6 изображён тот же холодильный цикл на диаграмме «давление-энтальпия». Рассмотрим подробно, что же у нас происходит с хладагентом при работе системы Variable Refrigerant Flow.

1-2: Жидкий хладагент после конденсатора в точке 1 делится на два потока. Бóльшая часть проходит через противоточный теплообменник. В нём происходит охлаждение основной части хладагента до +15…+25 °C (в зависимости от его эффективности), которая далее поступает в жидкостный трубопровод (точка 2).

1-5: Вторая часть потока жидкого хладагента из точки 1 проходит через ТРВ, его температура понижается до +5 °C (точка 5), поступает на тот же противоточный теплообменник. В последнем происходит его кипение и охлаждение основной части хладагента. После кипения газообразный фреон сразу поступает на всасывание компрессора (точка 7).

2-3: На выходе из наружного блока (точка 2) жидкий хладагент проходит через трубопроводы к внутренним блокам. При этом теплообмена с окружающей средой практически не происходит, а вот часть давления теряется (точка 3). У некоторых производителей дросселирование производится частично в наружном блоке системы VRF, поэтому давление в точке 2 меньше, чем на нашем графике.

3-4: Потери давления хладагента в электронном регулирующем вентиле (ЭРВ), который располагается перед каждым внутренним блоком.

4-6: Испарение хладагента во внутреннем блоке.

6-7: Потери давления хладагента при его возврате в наружный блок по газовому трубопроводу.

7-8: Сжатие газообразного хладагента в компрессоре.

8-1: Охлаждение хладагента в теплообменнике наружного блока и его конденсация.

Рассмотрим подробнее участок от точки 1 до точки 5. В системах VRF без переохладителя хладагента процесс из точки 1 сразу переходит в точку 5 (по синей линии рис. 6). Удельная величина производительности хладагента (поступающего к внутренним блокам) пропорциональна длине линии 5-6. В системах, где переохладитель присутствует, полезная производительность хладагента пропорциональна линии 4-6. Сравнивая длины линии 5-6 и 4-6, становится понятной работа переохладителя фреона. Повышение эффективности охлаждения циркулирующего хладагента происходит как минимум на 25 %. Но это не означает, что производительность всей системы стала больше на 25 %. Дело в том, что часть хладагента не поступила к внутренним блокам, а сразу ушла на всасывание компрессора (линия 1-5-6).

Именно в этом состоит баланс: на какую величину повысилась производительность фреона, поступающего к внутренним блокам, на столько же уменьшилась производительность системы в целом.

Так в чём тогда смысл применения переохладителя хладагента, если общую производительность системы VRF он не увеличивает? Чтобы ответить на этот вопрос, снова вернёмся к рис. 1. Смысл применения переохладителя — снижение потерь на длинных трассах систем Variable Refrigerant Flow.

Дело в том, что все характеристики VRFсистем приводятся при стандартной длине трубопроводов 7,5 м. То есть сравнивать VRF-системы разных производителей по данным каталога не совсем корректно, поскольку реальные длины трубопроводов будут гораздо больше — как правило, от 40 до 150 м. Чем больше отличается длина трубопровода от стандартной, тем больше потери давления в системе, тем больше происходит вскипание хладагента в жидкостных трубопроводах. Потери производительности наружного блока по длине приводятся на специальных графиках в сервис-мануалах (рис. 7). Именно по этим графикам необходимо сравнивать эффективность работы систем при наличии переохладителя хладагента и при его отсутствии. Потери производительности VRF-систем без переохладителя на длинных трассах составляют до 30 %.

Выводы

1. Переохладитель хладагента является важнейшим элементом для работы VRF систем. Его функциями являются, во-первых, увеличение энергетической ёмкости хладагента, поступающего к внутренним блокам, во-вторых, уменьшение потерь давления в системе на длинных трассах.

2. Не все производители систем VRF снабжают свои системы переохладителем хладагента. Особенно часто исключают переохладитель ОЕМ-бренды для удешевления конструкции.

Варианты работы холодильной установки: работа с нормальным перегревом; с недостаточным перегревом; сильным перегревом.

Работа с нормальным перегревом.

Схема холодильной установки

Например, хладагент подаётся под давлением 18 бар, на всасывании давление 3 бара. Температура, при которой в испарителе кипит хладагент t 0 = −10 °С, на выходе из испарителя температура трубы с хладагентом t т = −3 °С.

Полезный перегрев ∆t = t т − t 0 = −3− (−10)= 7. Это нормальная работа холодильной установки с воздушным теплообменником . В испарителе фреон выкипает полностью примерно в 1/10 части испарителя (ближе к концу испарителя), превращаясь в газ. Дальше газ будет нагреваться температурой помещения.

Перегрев недостаточный.

Температура на выходе будет уже, к примеру, не −3, а −6 °С. Тогда перегрев составляет всего 4 °С. Точка, где перестаёт кипеть жидкий хладагент, перемещается ближе к выходу испарителя. Таким образом, большая часть испарителя заполняется жидким хладагентом. Такое может случиться, если терморегулирующий вентиль (ТРВ) будет подавать больше фреона в испаритель.

Чем больше фреона будет находиться в испарителе, тем больше будет образовываться паров, тем выше будет давление на всасывании и повысится температура кипения фреона (допустим уже не −10, а −5 °С). Компрессор начнет заливать жидким фреоном, потому что давление увеличилось, расход хладагента увеличился и компрессор не успевает откачать все пары (если компрессор не имеет дополнительных мощностей). При такой работе холодопроизводительность повысится, но компрессор может выйти из строя.

Сильный перегрев.

Если производительность ТРВ будет меньше, то фреона будет поступать в испаритель меньше и выкипать он будет раньше, (точка выкипания сместиться ближе к входу испарителя). Весь ТРВ и трубки после него обмерзнут и покроются льдом, а процентов 70 испарителя не обмерзнут вообще. Пары фреона в испарителе будут нагреваться, и их температура может достигнуть температуры в помещении, отсюда ∆t ˃ 7. При этом холодопроизводительность системы понизится, давление на всасывании понизится, нагретые пары фреона могут вывести из строя статор компрессора.

Недозаправка и перезаправка системы хладагентом

Как показывает статистика, основной причиной аномальной работы кондиционеров и выхода из строя компрессоров, является неправильная заправка холодильного контура хладагентом. Нехватка хладагента в контуре может объясняться случайными утечками. В то же время избыточная заправка, как правило, является следствием ошибочных действий персонала, вызванных его недостаточной квалификацией. Для систем, в которых в качестве дросселирующего устройства используется терморегулирующий вентиль (ТРВ), лучшим индикатором, указывающим на нормальную величину заправки хладагентом, является переохлаждение. Слабое переохлаждение говорит о том, что заправка недостаточна, сильное указывает на избыток хладагента. Заправка может считаться нормальной, когда температура переохлаждения жидкости на выходе из конденсатора поддерживается в пределах 10-12 градусов Цельсия при температуре воздуха на входе в испаритель, близкой к номинальным условиям эксплуатации.

Температура переохлаждения Тп определяется как разность:
Тп =Тк – Тф
Тк – температура конденсации, считываемая с манометра ВД.
Тф – температура фреона (трубы) на выходе из конденсатора.

1. Нехватка хладагента. Симптомы.

Недостаток фреона будет ощущаться в каждом элементе контура, но особенно этот недостаток чувствуется в испарителе, конденсаторе и жидкостной линии. В результате недостаточного количества жидкости испаритель слабо заполнен фреоном и холодопроизводительность низкая. Поскольку жидкости в испарителе недостаточно, количество производимого там пара сильно падает. Так как объемная производительность компрессора превышает количество пара, поступающего из испарителя, давление в нем аномально падает. Падение давления испарения приводит к снижению температуры испарения. Температура испарения может опуститься до минусовой отметки, в результате чего произойдет обмерзание входной трубки и испарителя, при этом перегрев пара будет очень значительным.

Температура перегрева Т перегрева определяется как разность:
Т перегрева = Т ф.и. – Т всас.
Т ф.и. - температура фреона (трубы) на выходе из испарителя.
Т всас. - температура всасывания, считываемая с манометра НД.
Нормальный перегрев 4-7 градусов Цельсия.

При значительном недостатке фреона перегрев может достигать 12–14 о С и, соответственно, температура на входе в компрессор также возрастет. А поскольку охлаждение электрических двигателей герметичных компрессоров осуществляется при помощи всасываемых паров, то в этом случае компрессор будет аномально перегреваться и может выйти из строя. Вследствие повышения температуры паров на линии всасывания температура пара в магистрали нагнетания также будет повышенной. Поскольку в контуре будет ощущаться нехватка хладагента, точно также его будет недостаточно и в зоне переохлаждения.

    Таким образом, основные признаки нехватки фреона:
  • Низкая холодопроизводительность
  • Низкое давление испарения
  • Высокий перегрев
  • Недостаточное переохлаждение (менее 10 градусов Цельсия)

Необходимо отметить, что в установках с капиллярными трубками в качестве дросселирующего устройства, переохлаждение не может рассматриваться как определяющий показатель для оценки правильности величины заправки хладагентом.

2. Чрезмерная заправка. Симптомы.

В системах с ТРВ в качестве дросселирующего устройства, жидкость не может попасть в испаритель, поэтому излишки хладагента находятся в конденсаторе. Аномально высокий уровень жидкости в конденсаторе снижает поверхность теплообмена, охлаждение газа поступающего в конденсатор, ухудшается, что приводит к повышению температуры насыщенных паров и росту давления конденсации. С другой стороны, жидкость внизу конденсатора остается в контакте с наружным воздухом гораздо дольше, и это приводит к увеличению зоны переохлаждения. Поскольку давление конденсации увеличено, а покидающая конденсатор жидкость отлично охлаждается, переохлаждение, замеренное на выходе из конденсатора, будет высоким. Из-за повышенного давления конденсации происходит снижение массового расхода через компрессор и падение холодопроизводительности. В результате, давление испарения также будет расти. Ввиду того, что чрезмерная заправка приводит к снижению массового расхода паров, охлаждение электрического двигателя компрессора будет ухудшаться. Более того, из-за повышенного давления конденсации, растет ток электрического двигателя компрессора. Ухудшение охлаждения и увеличение потребляемого тока ведет к перегреву электрического двигателя и в конечном итоге – выходу из строя компрессор.

    Итог. Основные признаки перезаправки хладагентом:
  • Упала хладопроизводительность
  • Возросло давление испарения
  • Возросло давление конденсации
  • Повышенное переохлаждение (более 7 о С)

В системах с капиллярными трубками в качестве дросселирующего устройства излишек хладагента может попасть в компрессор, что приведет к гидроударам и, в конечном итоге, к выходу компрессора из строя.

Рис. 1.21. Сема дендрита

Таким образом, механизм кристаллизации металлических расплавов при высоких скоростях охлаждения принципиально отличается тем, что в малых объемах расплава достигается высокая степень переохлаждения. Следствием этого является развитие объемной кристаллизации, которая у чистых металлов может быть гомогенной. Центры кристаллизации с размером больше критического способны к дальнейшему росту.

Для металлов и сплавов наиболее типична дендритная форма роста, впервые описанная еще в 1868 г. Д.К. Черновым. На рис. 1.21 показан эскиз Д.К. Чернова, поясняющий схему строения дендрита. Обычно дендрит состоит из ствола (ось первого порядка), от которого идут ветви – оси второго и последующих порядков. Дендритный рост протекает в определенных кристаллографических направлениях с ответвлениями через одинаковые промежутки. В структурах с решетками гранецентрированного и объемно-центрированного кубов дендритный рост идет в трех взаимно перпендикулярных направлениях. Экспериментально установлено, что дендритный рост наблюдается только в переохлажденном расплаве. Скорость роста определяется степенью переохлаждения. Задача теоретического определения скорости роста в функции степени переохлаждения еще не получила обоснованного решения. Исходя из экспериментальных данных, полагают, что эта зависимость приближенно может рассматриваться в виде V ~ (D Т) 2 .

Многие исследователи полагают, что при некоторой критической степени переохлаждения наблюдается лавинообразное увеличение числа центров кристаллизации, способных к дальнейшему росту. Зарождение все новых и новых кристаллов может прервать дендритный рост.

Рис. 1.22. Трансформация структур

По последним зарубежным данным, с ростом степени переохлаждения и температурного градиента перед фронтом кристаллизации, наблюдается трансформация структуры быстро затвердевающего сплава от дендритной к равноосной, микрокристаллической, нанокристаллической и далее к аморфному состоянию (рис. 1.22).

1.11.5. Аморфизация расплава

На рис. 1.23 иллюстрируется идеализированная ТТТ-диаграмма (Time-Temperature-Transaction), поясняющая особенности затвердевания легированных металлических расплавов в зависимости от скорости охлаждения.

Рис. 1.23. ТТТ-диаграмма: 1 – умеренная скорость охлаждения:

2 – очень высокая скорость охлаждения;

3 – промежуточная скорость охлаждения

По вертикальной оси отложена температура, по горизонтальной – время. Выше некоторой температуры плавления ‑ Т П жидкая фаза (расплав) стабильна. Ниже этой температуры жидкость переохлаждается и становится нестабильной, поскольку появляется возможность зарождения и роста центров кристаллизации. Однако при резком охлаждении может возникнуть прекращение движения атомов в сильно переохлажденной жидкости и при температуре ниже Т З сформируется аморфная твердая фаза. Для многих сплавов температура начала аморфизации ‑ Т З лежит в пределах от 400 до 500 ºC. Большинство традиционных слитков и отливок охлаждаются медленно в соответствии с кривой 1 на рис. 1.23. За время охлаждения возникают и растут центры кристаллизации, формируя кристаллическую структуру сплава в твердом состоянии. При очень высокой скорости охлаждения (кривая 2) образуется аморфная твердая фаза. Представляет также интерес промежуточная скорость охлаждения (кривая 3). Для этого случая возможен смешанный вариант затвердевания с наличием как кристаллической, так и аморфной структуры. Такой вариант имеет место в том случае, когда начавшийся процесс кристаллизации не успевает завершиться за время охлаждения до температуры Т З. Смешанный вариант затвердевания с формированием мелких аморфных частиц поясняется упрощенной схемой, представленной на рис. 1.24.

Рис. 1.24. Схема формирования мелких аморфных частиц

Слева на этом рисунке изображена крупная капля расплава, содержащая в объеме 7 центров кристаллизации, способных к последующему росту. В середине эта же капля разделена на 4 части, одна из которых не содержит центров кристаллизации. Эта частица затвердеет аморфной. Справа на рисунке исходная частица разделена на 16 частей, 9 из которых станут аморфными. На рис. 1.25. представлена реальная зависимость числа аморфных частиц высоколегированного никелевого сплава от размера частиц и интенсивности охлаждения в газовой среде (аргон, гелий).

Рис. 1.25. Зависимость числа аморфных частиц сплава никеля от

размера частиц и интенсивности охлаждения в газовой среде

Переход металлического расплава в аморфное, или как его еще называют, стеклообразное состояние является сложным процессом и зависит от многих факторов. В принципе, все вещества можно получить в аморфном состоянии, но для чистых металлов требуются столь высокие скорости охлаждения, которые пока не могут быть обеспечены современными техническими средствами. В то же время высоколегированные сплавы, в том числе эвтектические сплавы металлов с металлоидами (В, С, Si, Р) затвердевают в аморфном состоянии при более низких скоростях охлаждения. В табл. 1.9 приведены критические скорости охлаждения при аморфизации расплавов никеля и некоторых сплавов.

Таблица 1.9

Просмотров